Evaluation of cadmium accumulation and absorption of micronutrient elements in lettuce (Lactuca sativa L.) under cadmium chloride stress
Subject Areas : NutR. Heydari 1 , E. Mohajel Kazemi 2 , H. Nosrati 3 , M. Kolahi 4 * , A. Movafeghi 5
1 - PhD Student of the Department of Plant, Cell and Molecular Biology, Faculty of Natural Science,
University of Tabriz, Tabriz, Iran.
2 - Associate Professor of the Department of Plant, Cell and Molecular Biology, Faculty of Natural
Science, University of Tabriz, Tabriz, Iran.
3 - Professor of the Department of Plant, Cell and Molecular Biology, Faculty of Natural Science,
University of Tabriz, Tabriz, Iran.
4 - Associate Professor of Department of Biology, Faculty of Science, Shahid Chamran Universityof Ahvaz, Ahvaz, Iran.
5 - Professor of the Department of Plant, Cell and Molecular Biology, Faculty of Natural Science,
University of Tabriz, Tabriz, Iran.
Keywords: Lettuce (Lactuca sativa L.), Phytochemical, Cadmium accumulation, toxicity,
Abstract :
Introduction: The high mobility and solubility of cadmium pose a serious threat to the health of humans and other organisms. There are no signs of toxicity when cadmium metal accumulates in the tissues of plants and enters the human food chain. Cadmium transfer rates from vegetables to the human diet depend on their accumulation. Thus, inorder to investigate heavy metal absorption by lettuce, this research evaluated the levels of cadmium accumulating in various lettuce organs. Materials and Methods: The seeds of lettuce (Lactuca sativa Linn) were cultivated in autoclaved pots containing perlite and cocopeat (with a ratio of 2 to 1). The pots were kept under greenhouse conditions of 25±1 (day temperature) and 20±1 (night temperature) and light/dark conditions were placed. About three weeks after the plants reached the three-leaf stage, the seedlings were treated with cadmium chloride in 3 replicates. Four concentrations (0, 30, 60 and 90 μg/g perlite) were used every 3 days. After 5 stages of treatment and 28 days after cultivation, the third leaf of the plants was used for the studies. Results: Cadmium increased lettuce's phenol, flavonoid and antioxidant content significantly as compared to the control sample. Furthermore, by increasing the concentrations of cadmium, lettuce showed an increase in total protein, soluble sugar, free amino acids, proline, malondialdehyde, and hydrogen peroxide as compared to the control sample. Due to the increasing amount of cadmium applied to lettuce plants, an increase in the amount of cadmium in the roots was greater than in the aerial parts. Conclusion: In general, the results of this research indicated that lettuce is a cadmium accumulating plant with the ability to accumulate heavy metals in its roots and aerial parts. Contaminated with heavy metals, it seems necessary to protect the health of consumers.
Abdalla, M. A., Li, F., Wenzel-Storjohann, A., Sulieman, S., Tasdemir, D. & Mühling, K. H. (2021). Comparative metabolite profile, biological activity and overall quality of three lettuce (Lactuca sativa L., Asteraceae) cultivars in response to sulfur nutrition. Pharmaceutics, 13(5), 713. https://doi.org/10.3390/pharmaceutics13050713.
Akhter, F. (2012). Cadmium accumulation and distribution in lettuce and barley. The University of Western Ontario (Canada).
Ali, B., Deng, X., Hu, X., Gill, R. A., Ali, S., Wang, S. & Zhou, W. (2015). Deteriorative Effects of Cadmium Stress on Antioxidant System and Cellular Structure in Germinating Seeds of Brassica napus L. Journal of Agricultural Science and Technology, 17(1), 63-74. 20.1001.1.16807073.2015.17.1.2.3.
Barcelo, J., Vazquez, M. D. & Poschenrieder, C. H. (1988). Structural and ultrastructural disorders in cadmium‐treated bush bean plants (Phaseolus vulgaris L.). New phytologist, 108(1), 37-49. https://doi.org/10.1111/j.1469-8137.1988.tb00202.x.
Bates, L. S., Waldren, R. A. & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and soil, 39, 205-207. https://doi.org/10.1007/BF00018060.
Baversad, M. S., Ghorbani, H., Afyuni, M. & KheirAbadi, H. (2014). The potential risk assessment of heavy metals on human health in some agricultural products in Isfahan province. JWSS-Isfahan University of Technology, 18(67), 71-81 [In Persian].
Berg, T. (2003). How to establish international limits for mycotoxins in food and feed. Food Control, 14(4), 219-224. https://doi.org/10.1016/S0956-7135(02)00021-X.
Bichi, A. M. & Ibrahim, S. R. (2018). Plant diversity and profile distribution of some available Micronutrients in selected soils of Kano State, Nigeria. Bayero Journal of Pure and Applied Sciences, 11(2), 20-31. 10.4314/bajopas.v11i2.4.
Biyani, K., Tripathi, D. K., Lee, J. H. & Muneer, S. (2019). Dynamic role of iron supply in amelioration of cadmium stress by modulating antioxidative pathways and peroxidase enzymes in mungbean. AoB Plants, 11(2), plz005. https://doi.org/10.1093/aobpla/plz005.
Boominathan, R. & Doran, P. M. (2002). Ni‐induced oxidative stress in roots of the Ni hyperaccumulator, Alyssum bertolonii. New phytologist, 156(2), 205-215. https://doi.org/10.1046/j.1469-8137.2002.00506.x.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254.https://doi.org/10.1016/0003-2697(76)90527-3.
Chang, C. C., Yang, M. H., Wen, H. M. & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of food and drug analysis, 10(3). https://doi.org/10.38212/2224-6614.2748.
Coakley, S., Cahill, G., Enright, A. M., O’Rourke, B. & Petti, C. (2019). Cadmium hyperaccumulation and translocation in Impatiens glandulifera: from foe to friend. Sustainability, 11(18), 5018. https://doi.org/10.3390/su11185018.
Dala-Paula, B. M., Custódio, F. B., Knupp, E. A., Palmieri, H. E., Silva, J. B. B. & Glória, M. B. A. (2018). Cadmium, copper and lead levels in different cultivars of lettuce and soil from urban agriculture. Environmental pollution, 242, 383-389. https://doi.org/10.1016/j.envpol.2018.04.101.
de Silva, N. D. G., Cholewa, E. & Ryser, P. (2012). Effects of combined drought and heavy metal stresses on xylem structure and hydraulic conductivity in red maple (Acer rubrum L.). Journal of experimental botany, 63(16), 5957-5966. https://doi.org/10.1093/jxb/ers241.
Dhir, B., Sharmila, P. & Saradhi, P. P. (2004). Hydrophytes lack potential to exhibit cadmium stress induced enhancement in lipid peroxidation and accumulation of proline. Aquatic toxicology, 66(2), 141-147. https://doi.org/10.1016/j.aquatox.2003.08.005.
Eid, E. M. & Shaltout, K. H. (2016). Bioaccumulation and translocation of heavy metals by nine native plant species grown at a sewage sludge dump site. International Journal of Phytoremediation, 18(11), 1075-1085. https://doi.org/10.1080/15226514.2016.1183578.
El-Beltagi, H. S., Mohamed, H. I. & Sofy, M. R. (2020). Role of ascorbic acid, glutathione and proline applied as singly or in sequence combination in improving chickpea plant through physiological change and antioxidant defense under different levels of irrigation intervals. Molecules, 25(7), 1702. 10.3390/molecules25071702.
Emanuil, N., Akram, M. S., Ali, S., El-Esawi, M. A., Iqbal, M., & Alyemeni, M. N. (2020). Peptone-induced physio-biochemical modulations reduce cadmium toxicity and accumulation in spinach (Spinacia oleracea L.). Plants, 9(12), 1806. https://doi.org/ 10.3390/plants9121806.
Fontes, R. L., Pereira, J., & Neves, J. C. (2014). Uptake and translocation of Cd and Zn in two lettuce cultivars. Anais da Academia Brasileira de Ciências, 86, 907-922. https://doi.org/10.1590/0001-37652014117912.
Fuentes, D., Disante, K. B., Valdecantos, A., Cortina, J., & Vallejo, V. R. (2007). Response of Pinus halepensis Mill. seedlings to biosolids enriched with Cu, Ni and Zn in three Mediterranean forest soils. Environmental Pollution, 145(1), 316-323. https://doi.org/10.1016/j.envpol.2006.03.005.
Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A. & Catalano, A. (2020). The effects of cadmium toxicity. International journal of environmental research and public health, 17(11), 3782. https://doi.org/10.3390/ijerph17113782.
Głowacka, K., Olszewski, J., Sowiński, P., Kalisz, B. & Najdzion, J. (2022). Developmental and physiological responses of Pisum sativum L. after short-and long-time cadmium exposure. Agriculture, 12(5), 637. https://doi.org/10.3390/agriculture12050637.
Haghighi, M., Kafi, M., Taghavi, T. S., Kashi, A. K. & Savabeghi, G. (2010). Effect of Humic Acid on N, P and Stress Indicators of Lettuce Polluted by Cadmium. Water and Soil Science, 20(1), 87-98 [In Persian].
Harinasut, P., Poonsopa, D., Roengmongkol, K. & Charoensataporn, R. (2003). Salinity effects on antioxidant enzymes in mulberry cultivar. Science Asia, 29(2), 109-113.
He, Y., Dai, S., Dufresne, C. P., Zhu, N., Pang, Q. & Chen, S. (2013). Integrated proteomics and metabolomics of Arabidopsis acclimation to gene-dosage dependent perturbation of isopropylmalate dehydrogenases. PLoS One, 8(3), e57118. https://doi.org/10.1371/journal.pone.0057118.
Hwang, M. N. & Ederer, G. M. (1975). Rapid hippurate hydrolysis method for presumptive identification of group B streptococci. Journal of Clinical Microbiology, 1(1), 114-115. https://doi.org/10.1128/jcm.1.1.114-115.1975.
Kochert, G. (1978). Carbohydrate determination by the phenol-sulfuric acid method. Handbook of phycological methods, Physiological and biochemical methods., 95.
Krzesłowska, M. (2011). The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta physiologiae plantarum, 33, 35-51. https://doi.org/10.1007/s11738-010-0581-z.
Kubier, A., Wilkin, R. T. & Pichler, T. (2019). Cadmium in soils and groundwater: a review. Applied Geochemistry, 108, 104388. https://doi.org/10.1016/j.apgeochem.2019.104388.
Kumar, S., Shah, S. H., Vimala, Y., Jatav, H. S., Ahmad, P., Chen, Y. & Siddique, K. H. (2022). Abscisic acid: Metabolism, transport, crosstalk with other plant growth regulators, and its role in heavy metal stress mitigation. Frontiers in Plant Science, 13, 972856. https://doi.org/10.3389/fpls.2022.972856.
Luo, J. S. & Zhang, Z. (2021). Mechanisms of cadmium phytoremediation and detoxification in plants. The Crop Journal, 9(3), 521-529. https://doi.org/10.1016/j.cj.2021.02.001.
Manquián-Cerda, K., Cruces, E., Escudey, M., Zúñiga, G. & Calderón, R. (2018). Interactive effects of aluminum and cadmium on phenolic compounds, antioxidant enzyme activity and oxidative stress in blueberry (Vaccinium corymbosum L.) plantlets cultivated in vitro. Ecotoxicology and environmental safety, 150, 320-326. https://doi.org/10.1016/j.ecoenv.2017.12.050.
Márquez-García, B., Fernández-Recamales, M. & Córdoba, F. (2012). Effects of cadmium on phenolic composition and antioxidant activities of Erica andevalensis. Journal of Botany, 2012. 10.1155/2012/936950.
Meda, A., Lamien, C. E., Romito, M., Millogo, J. & Nacoulma, O. G. (2005). Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food chemistry, 91(3), 571-577. https://doi.org/10.1016/j.foodchem.2004.10.006.
Miliauskas, G., Venskutonis, P. R. & Van Beek, T. A. (2004). Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food chemistry, 85(2), 231-237. https://doi.org/10.1016/j.foodchem.2003.05.007.
Mohamed, R. E. (2021). Investigating the Role of Porcupine and WNTless: Components of WNT Signalling Pathway in Response to Endoplasmic Reticulum, Oxidative, Hypoxia and Environmental Toxins Stesses (Doctoral dissertation, Carleton University). https://doi.org/https://doi.org/10.22215/etd/2021-14744.
Muneer, S., Kim, T. H. & Qureshi, M. I. (2012). Fe modulates Cd-induced oxidative stress and the expression of stress responsive proteins in the nodules of Vigna radiata. Plant Growth Regulation, 68, 421-433. https://doi.org/10.1007/s10725-012-9731-1.
Payehghadr, M., Esmaeilpour, S., Kazem Rofouei, M. & Adlnasab, L. (2013). Determination of trace amount of cadmium by atomic absorption spectrometry in table salt after solid phase preconcentration using octadecyl silica membrane disk modified by a new derivative of pyridine. Journal of Chemistry, 2013. https://doi.org/10.1155/2013/417085.
Ramos, I., Esteban, E., Lucena, J. J. & Gárate, A. (2002). Cadmium uptake and subcellular distribution in plants of Lactuca sp. Cd–Mn interaction. Plant science, 162(5), 761-767. https://doi.org/10.1016/S0168-9452(02)00017-1.
Roa, J. (2023). Informal Food Markets in Quezon City and Pasay City, Philippines: A Rapid Assessment. Resilient Cities Initiative Research Report. https://doi.org/10.4160/9789290606642.
Sandalio, L. M., Dalurzo, H. C., Gomez, M., Romero‐Puertas, M. C. & Del Rio, L. A. (2001). Cadmium‐induced changes in the growth and oxidative metabolism of pea plants. Journal of experimental botany, 52(364), 2115-2126. https://doi.org/10.1093/jexbot/52.364.2115.
Sakihama, Y., Cohen, M. F., Grace, S. C. & Yamasaki, H. (2002). Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Toxicology, 177(1), 67-80. https://doi.org/10.1016/S0300-483X(02)00196-8.
Sanjari, M., Siroosmehr, A. & Fakheri, B. (2015). The effects of drought stress and humic acid on some physiological characteristics of roselle (Hibiscus sabdariffa). Journal of Crops Improvement, 17(2) [In Persian].
Schat, H., Sharma, S. S. & Vooijs, R. (1997). Heavy metal‐induced accumulation of free proline in a metal‐tolerant and a nontolerant ecotype of Silene vulgaris. Physiologia plantarum, 101(3), 477-482. https://doi.org/10.1111/j.1399-3054.1997.tb01026.x.
Shah, K. & Dubey, R. S. (1997). Effect of cadmium on proline accumulation and ribonuclease activity in rice seedlings: role of proline as a possible enzyme protectant. Biologia Plantarum, 40, 121-130. https://doi.org/10.1023/A:1000956803911.
Shahid, M., Dumat, C., Khalid, S., Niazi, N. K. & Antunes, P. M. (2017). Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system. Reviews of Environmental Contamination and Toxicology Volume 241, 73-137. https://doi.org/10.1007/398_2016_8.
Sharma, S. S., Schat, H. & Vooijs, R. (1998). In vitro alleviation of heavy metal-induced enzyme inhibition by proline. Phytochemistry, 49(6), 1531-1535. https://doi.org/10.1016/S0031-9422(98)00282-9.
Sinisha, A. K. & Puthur, J. T. (2018). Comparative study on the zinc and cadmium tolerance potential of twelve prominent rice cultivars. Journal of Crop Science and Biotechnology, 21, 201-210. https://doi.org/10.1007/s12892-018-0042-0.
Sufian, J., Golchin, A., Moradi, S., Jahanban, L. & Gheiratie Arani, L. (2019). growth and nutrients concentration of duckweed (Lemna minor L.) as affected by cadmium and salinity application of aqueous solutions. Journal of Plant Research (Iranian Journal of Biology), 32(3), 610-622 [In Persian].
Suhani, I., Sahab, S., Srivastava, V. & Singh, R. P. (2021). Impact of cadmium pollution on food safety and human health. Current Opinion in Toxicology, 27, 1-7. https://doi.org/10.1016/j.cotox.2021.04.004.
Sun, S., Li, M., Zuo, J., Jiang, W. & Liu, D. (2015). Cadmium effects on mineral accumulation, antioxidant defence system and gas exchange in cucumber. Zemdirbyste-Agriculture, 102(2), 193-200. 10.13080/z-a.2015.102.025.
Tester, M. & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of botany, 91(5), 503-527. https://doi.org/10.1093/aob/mcg058.
Tkalec, M., Štefanić, P. P., Cvjetko, P., Šikić, S., Pavlica, M. & Balen, B. (2014). The effects of cadmium-zinc interactions on biochemical responses in tobacco seedlings and adult plants. Plos one, 9(1), e87582. https://doi.org/10.1371/journal.pone.0087582.
Tawfik, M. M., Mohamed, M. H., Sadak, M. S. & Thalooth, A. T. (2021). Iron oxide nanoparticles effect on growth, physiological traits and nutritional contents of Moringa oleifera grown in saline environment. Bulletin of the National Research Centre, 45(1), 1-9. https://doi.org/10.1186/s42269-021-00624-9.
Verma, S. & Dubey, R. S. (2001). Effect of cadmium on soluble sugars and enzymes of their metabolism in rice. Biologia plantarum, 44, 117-123. https://doi.org/10.1023/A:1017938809311.
Vollmannova, A., Musilova, J., Toth, T., Arvay, J., Bystricka, J., Medvecky, M. & Daniel, J. (2014). Phenolic compounds, antioxidant activity and Cu, Zn, Cd and Pb content in wild and cultivated cranberries and blueberries. International journal of environmental analytical chemistry, 94(14-15), 1445-1451. https://doi.org/10.1080/03067319.2014.974588.
Wang, W., Vinocur, B. & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218, 1-14. https://doi.org/10.1007/s00425-003-1105-5.
Weisany, W., Sohrabi, Y., Heidari, G., Siosemardeh, A. & Ghassemi-Golezani, K. (2012). Changes in antioxidant enzymes activity and plant performance by salinity stress and zinc application in soybean ('Glycine max'L.). Plant Omics, 5(2), 60-67.
Yazdi, M., Kolahi, M., Kazemi, E. M. & Barnaby, A. G. (2019). Study of the contamination rate and change in growth features of lettuce (Lactuca sativa Linn.) in response to cadmium and a survey of its phytochelatin synthase gene. Ecotoxicology and Environmental Safety, 180, 295-308. https://doi.org/10.1016/j.ecoenv.2019.04.071.
Yousuf, B., Gul, K., Wani, A. A. & Singh, P. (2016). Health benefits of anthocyanins and their encapsulation for potential use in food systems: A review. Critical reviews in food science and nutrition, 56(13), 2223-2230. https://doi.org/10.1080/10408398.2013.805316.
Zhang, F., Shi, W., Jin, Z. & Shen, Z. (2002). Response of antioxidative enzymes in cucumber chloroplasts to cadmium toxicity. Journal of Plant Nutrition, 26(9), 1779-1788. https://doi.org/10.1081/PLN-120023282.
Zulfiqar, U., Ayub, A., Hussain, S., Waraich, E. A., El-Esawi, M. A., Ishfaq, M. & Maqsood, M. F. (2022). Cadmium toxicity in plants: Recent progress on morpho-physiological effects and remediation strategies. Journal of soil science and plant nutrition, 1-58. https://doi.org/10.1007/s42729-021-00645-3.