Antibacterial activity of zinc aluminate nanoparticles against foodborne pathogenic bacteria of E. coli and P. aeruginosa
Subject Areas :
Food Science and Technology
A. Taheri
1
*
,
M. Ziaadini
2
,
M. Gahramzei
3
1 - Associate Professor, Faculty of Marine Sciences, Chabahar Maritime University, Chabahar, Iran
2 - Assistant Professor, Faculty of Marine Sciences, Chabahar Maritime University, Chabahar, Iran
3 - Graduate Student, Faculty of Marine Sciences, Chabahar Maritime University, Chabahar, Iran
Received: 2019-12-10
Accepted : 2020-07-27
Published : 2020-06-21
Keywords:
Escherichia coli,
Nanoparticle,
Pseudomonas aeruginosa,
Antibacterial activity,
Zinc aluminate,
Abstract :
Materials in nanoscale dimensions have a high surface-to-volume ratio, and thus have better reactions with other materials. The development of nanotechnology over the past decades has opened up opportunities for discovering the antibacterial effects of metallic nanoparticles. In this study, the antibacterial properties of nanoparticles on aluminate (ZnAl2O4) were studied on Escherichia coli and Pseudomonas aeruginosa bacteria. Antibacterial activity was assessed by using the disk diffusion method on agar using nanoparticles on synthesized aluminate. The non-growth halo diameter indicates the sensitivity of bacteria to antimicrobials. The minimum inhibitory concentration of bacterial growth (MIC) and minimum bacterial leaching concentration (MBC) was measured by microdilution in sterile tubes. Statistical analysis was done by T-test. The results of this study showed that Pseudomonas aeruginosa sensitivity (16.06±1.8mm) was higher than E. coli (11.64±2.2mm) (p < 0.05). The minimum inhibitory concentration (MIC) and bactericidal concentration MBC of bacteria Pseudomonas aeruginosa and Escherichia coli bacteria MIC and MBC was lacking. According to the results obtained in this study, we conclude that Pseudomonas aeruginosa was more sensitive to alumina than that of E. coli against nanoparticles.
References:
Ahmed, J., Arfat, Y.A., Bher, A., Mulla, M., Jacob, H., and Auras, R. (2018). Active chicken meat packaging based on polylactide films and bimetallic Ag-Cu nanoparticles and essential oil. Journal of Food Science, 83(5):1299–1310.
Al-Shabib, N.A., Husain, F.M., Ahmed, F., Khan, R.A., Ahmad, I., Alsharaeh, E., Khan, M.S., Hussain, A., Rehman, M.T., Yusuf, M. et al. (2016). Biogenic synthesis of zinc oxide nanostructures from nigella sativa seed: Prospective role as food packaging material inhibiting broad-spectrum quorum sensing and biofilm. Scientific Report, 6:36761.
Applerot, G., Lellouche, J., Lipovsky, A., Nitzan, Y., Lubart, R., Gedanken, A. and Banin, E. (2012). Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress. Small, 8(21):3326–3337.
Azeredo, H.M.C.D. (2012). In: nano-antimicrobials progress and prospects, Cioffi, N. and Rai, M. (Editors), Antimicrobial activity of nanomaterials for food packaging applications. First edition, Springer. P. 375.
Bala, T., Armstrong, G., Laffir, F. and Thornton, R. (2011). Titania – silver and alumina silver composite nanoparticles: novel, versatile synthesis, reaction mechanism and potential antimicrobial application. Journal of Colloid and Interface Science, 356(2):395 – 403.
Bastarrachea, L.J., Denis-Rohr, A., and Goddard, J.M. (2015). Antimicrobial Food Equipment Coatings: Applications and Challenges. Annual Review of Food Science and Technology, 6:97–118.
Beak, S., Kim, H. and Song, K.B. (2017). Characterization of an olive flounder bone gelatin-zinc oxide nanocomposite film and evaluation of its potential application in spinach packaging. Journal of Food Science, 82:2643–2649.
Chen, L., Sun, X., Liu, Y., Zhou, K. and Li, Y. (2004). Porous ZnAl2O4 synthesized by a modified citrate technique. Journal of alloys and compounds, 376(1-2): 257-261.
Davar, F. and Salavati-Niasari, M. (2011). Synthesis and characterization of spinel-type zinc aluminate nanoparticles by a modified sol–gel method using new precursor. Journal of Alloys and Compounds, 509(5):2487-2492.
Deus, D., Kehrenberg, C., Schaudien, D., Klein, G. and Krischek, C. (2017). Effect of a nano-silver coating on the quality of fresh turkey meat during storage after modified atmosphere or vacuum packaging. Pollution Science, 96:449–457.
Diao, M. and Yao, M. (2009). Use of zero-valent iron nanoparticles in inactivating microbes. Water research, 43(20): 5243-5251.
Gautam, G. and Mishra, P. (2017). Development and characterization of copper nanocomposite containing bilayer film for coconut oil packaging. Journal of Food Processing and Preservation, 41:13243.
Hamed, M.E., Mashad, A. and Pan, Z. (2015). Food decontamination using nanomaterials. MOJ Food process and Technology, 1(2):40‒41.
Hassanpour, P., Panahi, Y., Ebrahimi-Kalan, A., Akbarzadeh, A., Davaran, S., Nasibova, A.N., et al., (2018). Biomedical applications of aluminium oxide nanoparticles. Micro and Nano Letters, 13(9):1227–1231.
Huang, L., Li, D., Lin, Y., Evans, D.G. and Duan, X. (2005). Influence of nano-MgO particle size on bactericidal action against Bacillus subtilis var. niger. Chinees Science Bulletin, 50(6):514–519.
Jiang, H., Manolache, S. and Te-Hsing, W. (2004). Plasma-enhanced deposition of silver nanoparticles onto polymer and metal surfaces for the generation of antimicrobial characteristics. Journal of Applied Polymer Science, 93(3):1411-1422.
Jiang, W., Mashayekhi, H. and Xing, B. (2009). Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environmental Pollution, 157(5):1619–1625.
Joye, I.J. and McClements, D.J. (2014). Biopolymer-based nanoparticles and microparticles: fabrication, characterization, and application. Current Opinion in Colloidal Interface Sciences, 19:417–427.
Kim, Y.H., Lee, D.K., Cha, H.G., Kim, C.W. and Kang, Y.S. (2007). Synthesis and characterization of antibacterial Ag-SiO2 nanocomposite. Journal of Physical Chemistry C, 111(9):3629–3635.
Kuang, H.J., Yang, L., Xu, H.Y. and Zhang, W.Y. (2015). Antibacterial properties and mechanism of zinc oxide nanoparticles. Chinese Journal of Pharmacology and Toxicology, 2(29):153–154.
Li, Q., Sherwood, J.S. and Logue, C.M. (2004). The prevalence of Listeria, Salmonella, Escherichia coli and E. coli O157:H7 on bison carcasses during processing. Food Microbiology, 21:791–799.
Lomate, G.B., Dandi, B. and Mishra, S. (2018). Development of antimicrobial LDPE/Cu nanocomposite food packaging film for extended shelf life of peda. Food Packaging and Shelf Life, 16:211–219.
Lu, Y., Yang, F.X. and Zhang, H.G. (2013). Preparation and Properties of Silver-loaded LDPE Antibacterial Films. Packaging Engineering, 11:27–30.
Menon, S.G., Hebbar, D.N., Kulkarni, S.D., Choudhari, K.S. and Santhosh, C. (2017). Facile synthesis and luminescence studies of nanocrystalline red emitting CrZnAl2O4 phosphor. Materials Research Bulletin, 86: 63-71.
Mizielinska, M., Kowalska, U., Jarosz, M. and Suminska, P. (2018). A comparison of the effects of packaging containing nano ZnO or polylysine on the microbial purity and texture of Cod (Gadus morhua) fillets. Nanomaterials, 8:158.
Nafisi Bahabadi, M., Hosseinpour Delavar, F., Mirbakhsh, M., Niknam, K.H. and Johari, S.A. (2016). Assessing antibacterial effect of filter media coated with silver nanoparticles against Bacillus spp. ISMJ, 19(1): 1-14. [In Persian]
Nakai, S.A. and Siebert, K.J. (2004). Organic acid inhibition models for Listeria innocua, Listeria ivanovii, Pseudomonas aeruginosa and Oenococcus oeni. Food Microbiology, 21:67–72.
Percival, S.L., Bowler, P.G. and Dolman, J. (2007). Antimicrobial activity of silver-containing dressings on wound microorganisms using an in vitro biofilm model. International Wound Journal, 4(2):186–191.
Poole, C.P.J. and Owens, F.J. (2003). Introduction to nanotechnology. Wiley-Inter science, 8(2): 29-48.
Rajkowski, K.T. (2012). Thermal inactivation of Escherichia coli O157:H7 and Salmonella on catfish and tilapia. Food Microbiology, 30:427-431.
Ravichandran, K., Rathi, R., Baneto, M., Karthika, K., Rajkumar, P.V., Sakthivel, B., and Damodaran, R. (2015). Effect of Fe+ doping on the antibacterial activity of ZnO powder. Ceramics International, 41:3390–3395.
Ravichandran, R. (2010). Nanotechnology applications in food and food processing: innovative green approaches, opportunities and uncertainties for global market. International Journal of Green Nanotechnology Physics and Chemistry, 1:72–96.
Sadiq, I.M., Chowdhury, B., Chandrasekaran, N. and Mukherjee, A. (2009). Antimicrobial sensitivity of Escherichia coli to alumina nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 5(3):282–286.
Salmani, M.H., Mirhosieni, M., Moshtagi laregani, M. and Akrami, K. (2017). Survey of silver nanoparticles antibacterial activity against gram-positive and gram-negative bacteria in vitro. J Tolooe behdasht Sci, 15(1): 76-84. [In Persian]
Sarkar, P., Choudhary, R., Panigrahi, S., Syed, I., Sivapratha, S. and Dhumal, C.V. (2017). Nano-inspired systems in food technology and packaging. Environmental Chemistry Letter, 15:607–622.
Shahverdi, A.R., Fakhimi, A., Shahverdi, H.R. and Minaian, S. (2007). Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine, 3:168–171.
Sharma, N., Jandaik, S., Kumar, S., Chitkara, M. and Sandhu, I.S. (2016). Synthesis, characterisation and antimicrobial activity of manganese-and iron-doped zinc oxide nanoparticles. Journal of Experimental Nanoscience, 11:54–71.
Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N.H.M., Ann, L.C., Bakhori, S.K.M., Hasan, H. and Mohamad, D. (2015). Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano Microbiology Letter, 7:219–242.
Smolkova, B., Yamani, N., Collins, A.R., Gutleb, A.C. and Dusinska, M. (2015). Nanoparticles in food. Epigenetic changes induced by nanomaterials and possible impact on health. Food Chemical Toxicology, 77:64–73.
Sodagar, A., Bahador, A., Pourhajibagher, M., Ahmadi, B. and Baghaeian, P. (2016). Effect of addition of Curcumin nanoparticles on antimicrobial property and shear bond strength of orthodontic composite to bovine enamel. Journal of Dentistry, 13(5):373-82.
Sondi, I. and Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloidal Interface Science, 275:177–182.
Stankic, S., Suman, S., Haque, F., and Vidic, J. (2016). Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties. Nanobiotechnology, 14(73):1-20.
Suo, B., Li, H., Wang, Y., Li, Z., Pan, Z. and Ai, Z. (2017). Effects of ZnO nanoparticle-coated packaging film on pork meat quality during cold storage. Journal of Science of Food and Agriculture, 97:2023–2029.
Tavakoli, H., Rastegar, H., Taherian, M., Samadi, M. and Rostami, H. (2017). The effect of nano-silver packaging in increasing the shelf life of nuts: An in vitro model. Italian Journal of Food Safety, 6: 68-74.
Thakkar, K.N., Mhatre, S.S. and Parikh, R.Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine and Nanotechnology, 6(2): 257-262.
Tony Jin, T. and He, Y. (2011). Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. Journal of Nanoparticle Research, 13:6877–6885.
Verma, S.K., Prabhat, K., Goyal, L., Rani, M. and Jain, A. (2010). A critical review of the implication of nanotechnology in modern dental practice. National Journal of Maxillofacial Surgery, 1(1):41-44.
Vidic, J., Stankic, S., Haque, F., Ciric, D., Le Goffic, R., Vidy, A., Jupille, J. and Delmas, B. (2013). Selective antibacterial effects of mixed ZnMgO nanoparticles. Journal of Nanoparticle Research, 15:1595.
Yamamoto, O. (2001). Influence of particle size on the antibacterial activity of zinc oxide. International Journal of Inorganic Materials, 3:643–646.
Yang, F., Liu, Q.L. and Lei, B. (2006). Research on the Application of Nano-Zinc Oxide. Anhui Chemical Industry, (1):13 –15.
Yoon, K., Byeon, J.H., Park, J. and Hwang, J. (2007). Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Science of the Total Environment, 373: 572–575.
Zhang, H. (2013). Application of Silver Nanoparticles in Drinking Water Purification. University of Rhode Island; 2013. 29 p.
Zhang, M., Zhang, C., Zhai, X., Luo, F., Du, Y. and Yan, C. (2019). Antibacterial mechanism and activity of cerium oxide nanoparticles. Science China Materials, 62(11):1727–1739.
Ziyaadini, M., Zahedi, M.M. and Dehghan-Rahimi, A. (2018). Enhanced photocatalytic degradation of 2,4-dichlorophenol in water solution using Sr-doped ZnAl2O4 nanoparticles. Journal of Particle Science and Technology, 4:101-109.
_||_
Ahmed, J., Arfat, Y.A., Bher, A., Mulla, M., Jacob, H., and Auras, R. (2018). Active chicken meat packaging based on polylactide films and bimetallic Ag-Cu nanoparticles and essential oil. Journal of Food Science, 83(5):1299–1310.
Al-Shabib, N.A., Husain, F.M., Ahmed, F., Khan, R.A., Ahmad, I., Alsharaeh, E., Khan, M.S., Hussain, A., Rehman, M.T., Yusuf, M. et al. (2016). Biogenic synthesis of zinc oxide nanostructures from nigella sativa seed: Prospective role as food packaging material inhibiting broad-spectrum quorum sensing and biofilm. Scientific Report, 6:36761.
Applerot, G., Lellouche, J., Lipovsky, A., Nitzan, Y., Lubart, R., Gedanken, A. and Banin, E. (2012). Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress. Small, 8(21):3326–3337.
Azeredo, H.M.C.D. (2012). In: nano-antimicrobials progress and prospects, Cioffi, N. and Rai, M. (Editors), Antimicrobial activity of nanomaterials for food packaging applications. First edition, Springer. P. 375.
Bala, T., Armstrong, G., Laffir, F. and Thornton, R. (2011). Titania – silver and alumina silver composite nanoparticles: novel, versatile synthesis, reaction mechanism and potential antimicrobial application. Journal of Colloid and Interface Science, 356(2):395 – 403.
Bastarrachea, L.J., Denis-Rohr, A., and Goddard, J.M. (2015). Antimicrobial Food Equipment Coatings: Applications and Challenges. Annual Review of Food Science and Technology, 6:97–118.
Beak, S., Kim, H. and Song, K.B. (2017). Characterization of an olive flounder bone gelatin-zinc oxide nanocomposite film and evaluation of its potential application in spinach packaging. Journal of Food Science, 82:2643–2649.
Chen, L., Sun, X., Liu, Y., Zhou, K. and Li, Y. (2004). Porous ZnAl2O4 synthesized by a modified citrate technique. Journal of alloys and compounds, 376(1-2): 257-261.
Davar, F. and Salavati-Niasari, M. (2011). Synthesis and characterization of spinel-type zinc aluminate nanoparticles by a modified sol–gel method using new precursor. Journal of Alloys and Compounds, 509(5):2487-2492.
Deus, D., Kehrenberg, C., Schaudien, D., Klein, G. and Krischek, C. (2017). Effect of a nano-silver coating on the quality of fresh turkey meat during storage after modified atmosphere or vacuum packaging. Pollution Science, 96:449–457.
Diao, M. and Yao, M. (2009). Use of zero-valent iron nanoparticles in inactivating microbes. Water research, 43(20): 5243-5251.
Gautam, G. and Mishra, P. (2017). Development and characterization of copper nanocomposite containing bilayer film for coconut oil packaging. Journal of Food Processing and Preservation, 41:13243.
Hamed, M.E., Mashad, A. and Pan, Z. (2015). Food decontamination using nanomaterials. MOJ Food process and Technology, 1(2):40‒41.
Hassanpour, P., Panahi, Y., Ebrahimi-Kalan, A., Akbarzadeh, A., Davaran, S., Nasibova, A.N., et al., (2018). Biomedical applications of aluminium oxide nanoparticles. Micro and Nano Letters, 13(9):1227–1231.
Huang, L., Li, D., Lin, Y., Evans, D.G. and Duan, X. (2005). Influence of nano-MgO particle size on bactericidal action against Bacillus subtilis var. niger. Chinees Science Bulletin, 50(6):514–519.
Jiang, H., Manolache, S. and Te-Hsing, W. (2004). Plasma-enhanced deposition of silver nanoparticles onto polymer and metal surfaces for the generation of antimicrobial characteristics. Journal of Applied Polymer Science, 93(3):1411-1422.
Jiang, W., Mashayekhi, H. and Xing, B. (2009). Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environmental Pollution, 157(5):1619–1625.
Joye, I.J. and McClements, D.J. (2014). Biopolymer-based nanoparticles and microparticles: fabrication, characterization, and application. Current Opinion in Colloidal Interface Sciences, 19:417–427.
Kim, Y.H., Lee, D.K., Cha, H.G., Kim, C.W. and Kang, Y.S. (2007). Synthesis and characterization of antibacterial Ag-SiO2 nanocomposite. Journal of Physical Chemistry C, 111(9):3629–3635.
Kuang, H.J., Yang, L., Xu, H.Y. and Zhang, W.Y. (2015). Antibacterial properties and mechanism of zinc oxide nanoparticles. Chinese Journal of Pharmacology and Toxicology, 2(29):153–154.
Li, Q., Sherwood, J.S. and Logue, C.M. (2004). The prevalence of Listeria, Salmonella, Escherichia coli and E. coli O157:H7 on bison carcasses during processing. Food Microbiology, 21:791–799.
Lomate, G.B., Dandi, B. and Mishra, S. (2018). Development of antimicrobial LDPE/Cu nanocomposite food packaging film for extended shelf life of peda. Food Packaging and Shelf Life, 16:211–219.
Lu, Y., Yang, F.X. and Zhang, H.G. (2013). Preparation and Properties of Silver-loaded LDPE Antibacterial Films. Packaging Engineering, 11:27–30.
Menon, S.G., Hebbar, D.N., Kulkarni, S.D., Choudhari, K.S. and Santhosh, C. (2017). Facile synthesis and luminescence studies of nanocrystalline red emitting CrZnAl2O4 phosphor. Materials Research Bulletin, 86: 63-71.
Mizielinska, M., Kowalska, U., Jarosz, M. and Suminska, P. (2018). A comparison of the effects of packaging containing nano ZnO or polylysine on the microbial purity and texture of Cod (Gadus morhua) fillets. Nanomaterials, 8:158.
Nafisi Bahabadi, M., Hosseinpour Delavar, F., Mirbakhsh, M., Niknam, K.H. and Johari, S.A. (2016). Assessing antibacterial effect of filter media coated with silver nanoparticles against Bacillus spp. ISMJ, 19(1): 1-14. [In Persian]
Nakai, S.A. and Siebert, K.J. (2004). Organic acid inhibition models for Listeria innocua, Listeria ivanovii, Pseudomonas aeruginosa and Oenococcus oeni. Food Microbiology, 21:67–72.
Percival, S.L., Bowler, P.G. and Dolman, J. (2007). Antimicrobial activity of silver-containing dressings on wound microorganisms using an in vitro biofilm model. International Wound Journal, 4(2):186–191.
Poole, C.P.J. and Owens, F.J. (2003). Introduction to nanotechnology. Wiley-Inter science, 8(2): 29-48.
Rajkowski, K.T. (2012). Thermal inactivation of Escherichia coli O157:H7 and Salmonella on catfish and tilapia. Food Microbiology, 30:427-431.
Ravichandran, K., Rathi, R., Baneto, M., Karthika, K., Rajkumar, P.V., Sakthivel, B., and Damodaran, R. (2015). Effect of Fe+ doping on the antibacterial activity of ZnO powder. Ceramics International, 41:3390–3395.
Ravichandran, R. (2010). Nanotechnology applications in food and food processing: innovative green approaches, opportunities and uncertainties for global market. International Journal of Green Nanotechnology Physics and Chemistry, 1:72–96.
Sadiq, I.M., Chowdhury, B., Chandrasekaran, N. and Mukherjee, A. (2009). Antimicrobial sensitivity of Escherichia coli to alumina nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 5(3):282–286.
Salmani, M.H., Mirhosieni, M., Moshtagi laregani, M. and Akrami, K. (2017). Survey of silver nanoparticles antibacterial activity against gram-positive and gram-negative bacteria in vitro. J Tolooe behdasht Sci, 15(1): 76-84. [In Persian]
Sarkar, P., Choudhary, R., Panigrahi, S., Syed, I., Sivapratha, S. and Dhumal, C.V. (2017). Nano-inspired systems in food technology and packaging. Environmental Chemistry Letter, 15:607–622.
Shahverdi, A.R., Fakhimi, A., Shahverdi, H.R. and Minaian, S. (2007). Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine, 3:168–171.
Sharma, N., Jandaik, S., Kumar, S., Chitkara, M. and Sandhu, I.S. (2016). Synthesis, characterisation and antimicrobial activity of manganese-and iron-doped zinc oxide nanoparticles. Journal of Experimental Nanoscience, 11:54–71.
Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N.H.M., Ann, L.C., Bakhori, S.K.M., Hasan, H. and Mohamad, D. (2015). Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano Microbiology Letter, 7:219–242.
Smolkova, B., Yamani, N., Collins, A.R., Gutleb, A.C. and Dusinska, M. (2015). Nanoparticles in food. Epigenetic changes induced by nanomaterials and possible impact on health. Food Chemical Toxicology, 77:64–73.
Sodagar, A., Bahador, A., Pourhajibagher, M., Ahmadi, B. and Baghaeian, P. (2016). Effect of addition of Curcumin nanoparticles on antimicrobial property and shear bond strength of orthodontic composite to bovine enamel. Journal of Dentistry, 13(5):373-82.
Sondi, I. and Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloidal Interface Science, 275:177–182.
Stankic, S., Suman, S., Haque, F., and Vidic, J. (2016). Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties. Nanobiotechnology, 14(73):1-20.
Suo, B., Li, H., Wang, Y., Li, Z., Pan, Z. and Ai, Z. (2017). Effects of ZnO nanoparticle-coated packaging film on pork meat quality during cold storage. Journal of Science of Food and Agriculture, 97:2023–2029.
Tavakoli, H., Rastegar, H., Taherian, M., Samadi, M. and Rostami, H. (2017). The effect of nano-silver packaging in increasing the shelf life of nuts: An in vitro model. Italian Journal of Food Safety, 6: 68-74.
Thakkar, K.N., Mhatre, S.S. and Parikh, R.Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine and Nanotechnology, 6(2): 257-262.
Tony Jin, T. and He, Y. (2011). Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. Journal of Nanoparticle Research, 13:6877–6885.
Verma, S.K., Prabhat, K., Goyal, L., Rani, M. and Jain, A. (2010). A critical review of the implication of nanotechnology in modern dental practice. National Journal of Maxillofacial Surgery, 1(1):41-44.
Vidic, J., Stankic, S., Haque, F., Ciric, D., Le Goffic, R., Vidy, A., Jupille, J. and Delmas, B. (2013). Selective antibacterial effects of mixed ZnMgO nanoparticles. Journal of Nanoparticle Research, 15:1595.
Yamamoto, O. (2001). Influence of particle size on the antibacterial activity of zinc oxide. International Journal of Inorganic Materials, 3:643–646.
Yang, F., Liu, Q.L. and Lei, B. (2006). Research on the Application of Nano-Zinc Oxide. Anhui Chemical Industry, (1):13 –15.
Yoon, K., Byeon, J.H., Park, J. and Hwang, J. (2007). Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Science of the Total Environment, 373: 572–575.
Zhang, H. (2013). Application of Silver Nanoparticles in Drinking Water Purification. University of Rhode Island; 2013. 29 p.
Zhang, M., Zhang, C., Zhai, X., Luo, F., Du, Y. and Yan, C. (2019). Antibacterial mechanism and activity of cerium oxide nanoparticles. Science China Materials, 62(11):1727–1739.
Ziyaadini, M., Zahedi, M.M. and Dehghan-Rahimi, A. (2018). Enhanced photocatalytic degradation of 2,4-dichlorophenol in water solution using Sr-doped ZnAl2O4 nanoparticles. Journal of Particle Science and Technology, 4:101-109.