Effect of cold atmospheric plasma on growth and biofilm formation of Staphylococcus aureus isolated from mastitic bovine milk
Subject Areas :
Food Science and Technology
F. Jahandideh
1
,
J. Shayegh
2
*
,
S. Hosseinzadeh
3
1 - Graduated in Veterinary Medicine, Shabestar Branch, Islamic Azad University, Shabestar, Iran
2 - Assistant Professor, Department of Veterinary Medicine, Shabestar Branch, Islamic Azad University, Shabestar, Iran
3 - Assistant Professor, Department of Veterinary Medicine, Shabestar Branch, Islamic Azad University, Shabestar, Iran
Received: 2019-12-01
Accepted : 2020-01-30
Published : 2020-03-20
Keywords:
Biofilm,
Milk,
Staphylococcus aureus,
Cold atmospheric plasma,
Dielectric barrier discharge,
Abstract :
Staphylococcus aureus is one of the most important pathogenic bacteria in the dairy products industry that is capable of biofilm formation. Biofilm formation by these bacteria has been led to resistance to antimicrobial agents. Inactivation of microorganisms using cold atmospheric plasma is one of the new approaches in the food industry. In this study, to evaluate the antibacterial and anti-biofilm effect of cold atmospheric plasma, a dielectric barrier discharge system was used. Twenty isolates of S. aureus from clinical bovine mastitis milk were exposed to plasma from 5 to 20 Sec and their antibacterial activity was estimated by recording the growth zone of inhibition. Plasma treatment was performed punctually for 5 Sec to assess the possible effects of plasma treatment on bacterial biofilm-formation activity after 24 h. The results show that a remarkable reduction in the growth of bacteria by increasing the flow of plasma. Moreover, statistical analysis of the ELISA reader results showed that the exposure of the isolates to plasma, significantly (p < 0.05) reduced the biofilm formation. These results suggest that plasma can be a suitable alternative method for thermal sterilization techniques. However, its application requires further studies to determine the severity and duration of exposure of microorganisms to plasma.
References:
· Batavani, R.A., Asri, S. and Naebzadeh, H. (2007). The effect of subclinical mastitis on milk composition in dairy cows. Iranian Journal of Veterinary Research, 8(3): 205-211.
· Brakstad, O.G., Aasbakk, K. and Maeland, J.A. (1992). Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. Journal of Clinical Microbiology, 30(7): 1654-1660.
· Cahill, O. J., Claro, T., O’Connor, N., Cafolla, A. A., Stevens, N. T., Daniels, S. et al., (2014). Cold air plasma to decontaminate inanimate surfaces of the hospital environment. Applied and Environal Microbiology, 80(6): 2004–2010.
· Chen, D., Zhao, T. and Doyle, M.P. (2015). Control of pathogens in biofilms on the surface of stainless steel by levulinic acid plus sodium dodecyl sulfate. International Journal of Food Microbiology, 207: 1-7.
· Daeschlein, G., Scholz, S., Arnold, A., von Podewils, S., Haase, H., Emmert, S. et al., (2012). In vitro susceptibility of important skin and wound pathogens against low temperature atmospheric pressure plasma jet (APPJ) and dielectric barrier discharge plasma (DBD). Plasma Processes and Polymers, 9(4): 380-389.
· Dai, J., Wu, S., Huang, J., Wu, Q., Zhang, F., Zhang, J. et al., (2019). Prevalence and characterization of Staphylococcus aureus isolated from pasteurized milk in china. Frontiers in Microbiology. 10: 641-641.
· Ebrahimzadeh, K. and Hanifian, S. (2017). Contamination rate, antibiotic susceptibility profile, biofilm formation and presence of TSST-1 gene in Staphylococcus aureus strains. Journal of Food Hygiene, 6(4): 1-15. [In Persian]
· Fernandez, A., Shearer, N., Wilson, D.R. and Thompson, A. (2012). Effect of microbial loading on the efficiency of cold atmospheric gas plasma inactivation of Salmonella enterica serovar Typhimurium. International Journal of Food Microbiology, 152(3): 175-180.
· Gajdács, M. (2019). The Continuing threat of methicillin-resistant Staphylococcus aureus. Antibiotics (Basel), 8(2): 52.
· Hamad, R.H.Ȧ. and Mahmood, M.A. (2013). Deactivation of Staphylococcus aureus and Escherichia coli using plasma needle at atmospheric pressure. International Journal of Engineering and Technology, 3(5): 1848-1852.
· Haug, A., Høstmark, A.T. and Harstad, O.M. (2007). Bovine milk in human nutrition-a review. Lipids in Health and Disease, 6: 25-25.
· Jamal, M., Ahmad, W., Andleeb, S., Jalil, F., Imran, M., Nawaz, M.A. et al., (2018). Bacterial biofilm and associated infections. Journal of the Chinese Medical Association, 81(1): 7-11.
· Jiang, C., Schaudinn, C., Jaramillo, D.E., Webster, P. and Costerton, J.W. (2012). In vitro antimicrobial effect of a cold plasma jet against enterococcus faecalis biofilms. International Scholarly Research Notices Dentistry, 295736.
· Joshi, S. G., Paff, M., Friedman, G., Fridman, A. and Brooks, A. D. (2010). Control of methicillin-resistant Staphylococcus aureus in planktonic form and biofilms: A biocidal efficacy study of nonthermal dielectric-barrier discharge plasma. American Journal of Infection Control, 38(4): 293-301.
· Langsrud, S. (2009). Biofilm formation by Gram-positive bacteria including Staphylococcus aureus, Mycobacterium avium and Enterococcus spp. in food processing environments, Woodhead Publishing Ltd, Cambridge, pp. 250-269.
· Mai-Prochnow, A., Clauson, M., Hong, J., Murphy, A.B. (2016). Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Scientific Reports, 6: 38610.
· Marchand, S., De Block, J., De Jonghe, V., Coorevits, A., Heyndrickx, M. and Herman, L. (2012). Biofilm formation in milk production and processing environments; influence on milk quality and safety. Comprehensive Reviews in Food Science and Food Safety, 11(2): 133-147.
· Mirzaei, H., Javadi, A., Farajli, M., Shah-Mohammadi, A.R., Monadi, A.R. and Barzegar, A. (2012). Prevalence of Staphylococcus aureus resistant to methicillin in traditional cheese and cream: a study in city of Tabriz, Iran. Journal of Veterinary Research, 67(1): 65-70. [In Persian]
· Mishra, R., Bhatia, S., Pal, R., Visen, A. and Trivedi, H. (2016). Cold plasma: emerging as the new standard in food safety. International Journal of Engineering and Science, 6 (2): 15-20.
· Noriega, E., Shama, G., Laca, A., Diaz, M. and Kong, M.G. (2011). Cold atmospheric gas plasma disinfection of chicken meat and chicken skin contaminated with Listeria innocua. Food Microbiology, 28(7): 1293-1300.
· Olatunde, O.O., Benjakul, S. and Vongkamjan, K. (2019). Dielectric barrier discharge cold atmospheric plasma: Bacterial inactivation mechanism. Journal of Food Safety, e12705.
· Pereyra, E.A., Picech, F., Renna, M.S., Baravalle, C., Andreotti, C.S., Russi, R. et al., (2016). Detection of Staphylococcus aureus adhesion and biofilm-producing genes and their expression during internalization in bovine mammary epithelial cells. Veterinary Microbiology, 183: 69-77.
· Razuqi, N., Muftin, F., Murbat, H. and Abdalameer, N. (2017). Influence of dielectric-barrier discharge (DBD) cold plasma on water contaminated bacteria. Annual Research & Review in Biology, 14: 1-9.
· Rola, J.G., Sosnowski, M., Ostrowska, M. and Osek, J. (2015). Prevalence and antimicrobial resistance of coagulase-positive staphylococci isolated from raw goat milk. Small Ruminant Research, 123(1): 124-128.
· Saba, V., Ramazani, K. and Hashemi, H. (2013). Bacterial sterilization using dielectric barrier discharge plasma in atmoshpheric pressure. Journal of Army University of Medical Sciences, 11(3): 196-199. [In Persian]
· Tasse, J., Trouillet-Assant, S., Josse, J., Martins-Simões, P., Valour, F., Langlois-Jacques, C. et al., (2018). Association between biofilm formation phenotype and clonal lineage in Staphylococcus aureus strains from bone and joint infections. PLoS One, 13(8): e0200064-e0200064.
· Ulbin-Figlewicz, N., Jarmoluk, A. and Marycz, K. (2015). Antimicrobial activity of low-pressure plasma treatment against selected foodborne bacteria and meat microbiota. Annals of Microbiology, 65(3): 1537-1546.
· Van Houdt, R. and Michiels, C.W. (2010). Biofilm formation and the food industry, a focus on the bacterial outer surface. Journal of Applied Microbiology, 109(4): 1117-1131.
· Wendlandt, S., Schwarz, S. and Silley, P. (2013). Methicillin-resistant Staphylococcus aureus: a food-borne pathogen. Annual Review of Food Science and Technology, 4: 117-139.
· Xing, X., Zhang, Y., Wu, Q., Wang, X., Ge, W. and Wu, C. (2016). Prevalence and characterization of Staphylococcus aureus isolated from goat milk powder processing plants. Food Control, 59: 644-650.
· Ziuzina, D., Boehm, D., Patil, S., Cullen, P.J. and Bourke, P. (2015). Cold plasma inactivation of bacterial biofilms and reduction of quorum sensing regulated virulence factors. PLoS One, 10(9): e0138209-e0138209.
_||_
· Batavani, R.A., Asri, S. and Naebzadeh, H. (2007). The effect of subclinical mastitis on milk composition in dairy cows. Iranian Journal of Veterinary Research, 8(3): 205-211.
· Brakstad, O.G., Aasbakk, K. and Maeland, J.A. (1992). Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. Journal of Clinical Microbiology, 30(7): 1654-1660.
· Cahill, O. J., Claro, T., O’Connor, N., Cafolla, A. A., Stevens, N. T., Daniels, S. et al., (2014). Cold air plasma to decontaminate inanimate surfaces of the hospital environment. Applied and Environal Microbiology, 80(6): 2004–2010.
· Chen, D., Zhao, T. and Doyle, M.P. (2015). Control of pathogens in biofilms on the surface of stainless steel by levulinic acid plus sodium dodecyl sulfate. International Journal of Food Microbiology, 207: 1-7.
· Daeschlein, G., Scholz, S., Arnold, A., von Podewils, S., Haase, H., Emmert, S. et al., (2012). In vitro susceptibility of important skin and wound pathogens against low temperature atmospheric pressure plasma jet (APPJ) and dielectric barrier discharge plasma (DBD). Plasma Processes and Polymers, 9(4): 380-389.
· Dai, J., Wu, S., Huang, J., Wu, Q., Zhang, F., Zhang, J. et al., (2019). Prevalence and characterization of Staphylococcus aureus isolated from pasteurized milk in china. Frontiers in Microbiology. 10: 641-641.
· Ebrahimzadeh, K. and Hanifian, S. (2017). Contamination rate, antibiotic susceptibility profile, biofilm formation and presence of TSST-1 gene in Staphylococcus aureus strains. Journal of Food Hygiene, 6(4): 1-15. [In Persian]
· Fernandez, A., Shearer, N., Wilson, D.R. and Thompson, A. (2012). Effect of microbial loading on the efficiency of cold atmospheric gas plasma inactivation of Salmonella enterica serovar Typhimurium. International Journal of Food Microbiology, 152(3): 175-180.
· Gajdács, M. (2019). The Continuing threat of methicillin-resistant Staphylococcus aureus. Antibiotics (Basel), 8(2): 52.
· Hamad, R.H.Ȧ. and Mahmood, M.A. (2013). Deactivation of Staphylococcus aureus and Escherichia coli using plasma needle at atmospheric pressure. International Journal of Engineering and Technology, 3(5): 1848-1852.
· Haug, A., Høstmark, A.T. and Harstad, O.M. (2007). Bovine milk in human nutrition-a review. Lipids in Health and Disease, 6: 25-25.
· Jamal, M., Ahmad, W., Andleeb, S., Jalil, F., Imran, M., Nawaz, M.A. et al., (2018). Bacterial biofilm and associated infections. Journal of the Chinese Medical Association, 81(1): 7-11.
· Jiang, C., Schaudinn, C., Jaramillo, D.E., Webster, P. and Costerton, J.W. (2012). In vitro antimicrobial effect of a cold plasma jet against enterococcus faecalis biofilms. International Scholarly Research Notices Dentistry, 295736.
· Joshi, S. G., Paff, M., Friedman, G., Fridman, A. and Brooks, A. D. (2010). Control of methicillin-resistant Staphylococcus aureus in planktonic form and biofilms: A biocidal efficacy study of nonthermal dielectric-barrier discharge plasma. American Journal of Infection Control, 38(4): 293-301.
· Langsrud, S. (2009). Biofilm formation by Gram-positive bacteria including Staphylococcus aureus, Mycobacterium avium and Enterococcus spp. in food processing environments, Woodhead Publishing Ltd, Cambridge, pp. 250-269.
· Mai-Prochnow, A., Clauson, M., Hong, J., Murphy, A.B. (2016). Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Scientific Reports, 6: 38610.
· Marchand, S., De Block, J., De Jonghe, V., Coorevits, A., Heyndrickx, M. and Herman, L. (2012). Biofilm formation in milk production and processing environments; influence on milk quality and safety. Comprehensive Reviews in Food Science and Food Safety, 11(2): 133-147.
· Mirzaei, H., Javadi, A., Farajli, M., Shah-Mohammadi, A.R., Monadi, A.R. and Barzegar, A. (2012). Prevalence of Staphylococcus aureus resistant to methicillin in traditional cheese and cream: a study in city of Tabriz, Iran. Journal of Veterinary Research, 67(1): 65-70. [In Persian]
· Mishra, R., Bhatia, S., Pal, R., Visen, A. and Trivedi, H. (2016). Cold plasma: emerging as the new standard in food safety. International Journal of Engineering and Science, 6 (2): 15-20.
· Noriega, E., Shama, G., Laca, A., Diaz, M. and Kong, M.G. (2011). Cold atmospheric gas plasma disinfection of chicken meat and chicken skin contaminated with Listeria innocua. Food Microbiology, 28(7): 1293-1300.
· Olatunde, O.O., Benjakul, S. and Vongkamjan, K. (2019). Dielectric barrier discharge cold atmospheric plasma: Bacterial inactivation mechanism. Journal of Food Safety, e12705.
· Pereyra, E.A., Picech, F., Renna, M.S., Baravalle, C., Andreotti, C.S., Russi, R. et al., (2016). Detection of Staphylococcus aureus adhesion and biofilm-producing genes and their expression during internalization in bovine mammary epithelial cells. Veterinary Microbiology, 183: 69-77.
· Razuqi, N., Muftin, F., Murbat, H. and Abdalameer, N. (2017). Influence of dielectric-barrier discharge (DBD) cold plasma on water contaminated bacteria. Annual Research & Review in Biology, 14: 1-9.
· Rola, J.G., Sosnowski, M., Ostrowska, M. and Osek, J. (2015). Prevalence and antimicrobial resistance of coagulase-positive staphylococci isolated from raw goat milk. Small Ruminant Research, 123(1): 124-128.
· Saba, V., Ramazani, K. and Hashemi, H. (2013). Bacterial sterilization using dielectric barrier discharge plasma in atmoshpheric pressure. Journal of Army University of Medical Sciences, 11(3): 196-199. [In Persian]
· Tasse, J., Trouillet-Assant, S., Josse, J., Martins-Simões, P., Valour, F., Langlois-Jacques, C. et al., (2018). Association between biofilm formation phenotype and clonal lineage in Staphylococcus aureus strains from bone and joint infections. PLoS One, 13(8): e0200064-e0200064.
· Ulbin-Figlewicz, N., Jarmoluk, A. and Marycz, K. (2015). Antimicrobial activity of low-pressure plasma treatment against selected foodborne bacteria and meat microbiota. Annals of Microbiology, 65(3): 1537-1546.
· Van Houdt, R. and Michiels, C.W. (2010). Biofilm formation and the food industry, a focus on the bacterial outer surface. Journal of Applied Microbiology, 109(4): 1117-1131.
· Wendlandt, S., Schwarz, S. and Silley, P. (2013). Methicillin-resistant Staphylococcus aureus: a food-borne pathogen. Annual Review of Food Science and Technology, 4: 117-139.
· Xing, X., Zhang, Y., Wu, Q., Wang, X., Ge, W. and Wu, C. (2016). Prevalence and characterization of Staphylococcus aureus isolated from goat milk powder processing plants. Food Control, 59: 644-650.
· Ziuzina, D., Boehm, D., Patil, S., Cullen, P.J. and Bourke, P. (2015). Cold plasma inactivation of bacterial biofilms and reduction of quorum sensing regulated virulence factors. PLoS One, 10(9): e0138209-e0138209.