Colorimetric and Sensory Properties of for Tube Feeding Formulated by Gelatin and Maltodextrin
Subject Areas : food scienceS. Bazrafshan 1 , M. Mizani 2 , Gh. Pazuki 3 , Sh. Shahriari 4
1 - PhD Student of the Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2 - Professor of the Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
3 - Associate Professor of the Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
4 - Associate Professor of the Department of Chemical Engineering, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
Keywords: Tube Feeding, Colorimetric Properties, Gelatin, Maltodextrin. Sensory Evaluation,
Abstract :
When nutritional intervention is deemed necessary, it is critical to identify the most appropriate nutrition support technique to ensure its efficacy. Tube feeding, also known as Enteral nutrition is a type of delivery system for patients who are unable to eat food orally. As a novel method to nutritional management, a gelatin-maltodextrin water-in-water emulsion for semi-solid enteral nutrition formulation was used. The color characteristics, turbidity, and sensory evaluation of nineteen experimental formulations were studied after 30 days of storage at 5°C using the I-optimal combination design approach. The color attributes were evaluated after jellifying at 5°C and forming dispersion subsequent to melting at 37°C. The samples with gelatin-to-maltodextrin ratio of (4:4) provided the lowest lightness values in gel (70.74) and dispersion (73.78) forms. The green color values for dispersions are slightly higher (-1.77 - (-2.47)) than for gels (-1.1 - (-2.42)). The gelatin to maltodextrin ratio of 7:1 results in increased yellowness in both the gel (14.07) and dispersion (14) forms. Furthermore, increasing the proportion of maltodextrin to gelatin resulted in a loss in luminosity, a decrease in yellow color, and a tendency towards greenish hues. During the 30-day storage period, there was a distinct increase in turbidity levels. The sensory evaluation results, particularly in the categories of odor, flavor, color, and overall acceptability, revealed that the product was well acceptable. On the tenth day, the ideal formula was determined with a ratio of gelatin-to-maltodextrin of 4.02:3.97% w/w.
Ahmad, T., Ismail, A., Ahmad, S. A., Khalil, K. A., Awad, E. A., Akhtar, M. T. & Sazili, A. Q. (2021). Recovery of Gelatin from Bovine Skin with the Aid of Pepsin and Its Effects on the Characteristics of the Extracted Gelatin. Polymers 2021, Vol. 13, Page 1554, 13(10), 1554. https://doi.org/10.3390/POLYM13101554
Ahmad, T., Ismail, A., Ahmad, S. A., Khalil, K. A., Leo, T. K., Awad, E. A., Imlan, J. C. & Sazili, A. Q. (2018). Effects of Ultrasound Assisted Extraction in Conjugation with Aid of Actinidin on the Molecular and Physicochemical Properties of Bovine Hide Gelatin. Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry, 23(4). https://doi.org/10.3390/MOLECULES23040730
Alipal, J., Mohd Pu’ad, N. A. S., Lee, T. C., Nayan, N. H. M., Sahari, N., Basri, H., Idris, M. I. & Abdullah, H. Z. (2021). A review of gelatin: Properties, sources, process, applications, and commercialisation. Materials Today: Proceedings, 42, 240–250. https://doi.org/10.1016/J.MATPR.2020.12.922
Ameer, K., Bae, S. W., Jo, Y., Lee, H. G., Ameer, A. & Kwon, J. H. (2017). Optimization of microwave-assisted extraction of total extract, stevioside and rebaudioside-A from Stevia rebaudiana (Bertoni) leaves, using response surface methodology (RSM) and artificial neural network (ANN) modelling. Food Chemistry, 229, 198–207. https://doi.org/10.1016/J.FOODCHEM.2017.01.121
Asiyanbi, T. T., Bio-Sawe, W., Idris, M. A. & Hammed, A. M. (2017). Gelatin-polysaccharide based materials: A review of processing and properties. International Food Research Journal, 24(December), 313–319.
Beldengrün, Y., Dallaris, V., Jaén, C., Protat, R., Miras, J., Calvo, M., García-Celma, M. J. & Esquena, J. (2020). Formation and stabilization of multiple water-in-water-in-water (W/W/W) emulsions. Food Hydrocolloids, 102, 105588. https://doi.org/10.1016/J.FOODHYD.2019.105588
Binsi, P. K., Nayak, N., Sarkar, P. C., Joshy, C. G., Ninan, G. & Ravishankar, C. N. (2017). Gelation and thermal characteristics of microwave extracted fish gelatin–natural gum composite gels. Journal of Food Science and Technology, 54(2), 518–530. https://doi.org/10.1007/s13197-017-2496-9
Boran, G., Mulvaney, S. J. & Regenstein, J. M. (2010). Rheological Properties of Gelatin from Silver Carp Skin Compared to Commercially Available Gelatins from Different Sources. Journal of Food Science, 75(8), E565–E571. https://doi.org/10.1111/J.1750-3841.2010.01543.X
Boullata, J., Brantley, S., Corkins, M., Guenter, P., Krenitsky, J., Lyman, B., Metheny, N. A., Mueller, C., Robbins, S. & Wessel, J. (2009). ASPEN enteral nutrition practice recommendations. Naspghan.Org. https://doi.org/10.1177/0148607108330314
Bulut, E. G. & Candoğan, K. (2022). Development and characterization of a 3D printed functional chicken meat based snack: Optimization of process parameters and gelatin level. Lwt, 154(July 2021). https://doi.org/10.1016/j.lwt.2021.112768
Butler, M. F. & Heppenstall-Butler, M. (2001). Phase Separation in Gelatin/Maltodextrin and Gelatin/Maltodextrin/Gum Arabic Mixtures Studied Using Small-Angle Light Scattering, Turbidity, and Microscopy. Biomacromolecules, 2(3), 812–823. https://doi.org/10.1021/BM015503R
Butler, M. F. & Heppenstall-Butler, M. (2003). Phase separation in gelatin/dextran and gelatin/maltodextrin mixtures. Food Hydrocolloids, 17(6), 815–830. https://doi.org/10.1016/S0268-005X(03)00103-6
Chronakis, I. S. (2010). On the Molecular Characteristics, Compositional Properties, and Structural-Functional Mechanisms of Maltodextrins: A Review. Http://Dx.Doi.Org/10.1080/10408699891274327, 38(7), 599–637. https://doi.org/10.1080/10408699891274327
Cole, C. G. B. & Roberts, J. J. (1997). Gelatine colour measurement. Meat Science, 45(1), 23–31. https://doi.org/10.1016/S0309-1740(96)00096-4
Dai, H., Li, X., Du, J., Ma, L., Yu, Y., Zhou, H., Guo, T. & Zhang, Y. (2020). Effect of interaction between sorbitol and gelatin on gelatin properties and its mechanism under different citric acid concentrations. Food Hydrocolloids, 101, 105557. https://doi.org/10.1016/J.FOODHYD.2019.105557
Delarue, J. (2022). Overview of sensory methods for the evaluation of nonfood products. Nonfood Sensory Practices, 17–37. https://doi.org/10.1016/B978-0-12-821939-3.00020-8
Dürr, P. (1994). Sensory analysis of flavours. Understanding Natural Flavors, 21–28. https://doi.org/10.1007/978-1-4615-2143-3_2
Feiner, G. (2006). Sensory evaluation of meat products. Meat Products Handbook, 565–568. https://doi.org/10.1533/9781845691721.3.565
He, J., Zhang, J., Xu, Y., Ma, Y. & Guo, X. (2022). The Structural and Functional Differences between Three Species of Fish Scale Gelatin and Pigskin Gelatin. Foods 2022, Vol. 11, Page 3960, 11(24), 3960. https://doi.org/10.3390/FOODS11243960
Hofman, D. L., van Buul, V. J. & Brouns, F. J. P. H. (2016). Nutrition, Health, and Regulatory Aspects of Digestible Maltodextrins. Critical Reviews in Food Science and Nutrition, 56(12), 2091–2100. https://doi.org/10.1080/10408398.2014.940415
Huang, T., Tu, Z. C., Shangguan, X., Wang, H., Zhang, N., Zhang, L. & Sha, X. (2018). Gelation kinetics and characterization of enzymatically enhanced fish scale gelatin–pectin coacervate. Journal of the Science of Food and Agriculture, 98(3), 1024–1032. https://doi.org/10.1002/JSFA.8551
John, M. (1999). Principles of Food Chemistry Third Edition. In Science. http://www.knovel.com/web/portal/browse/display?_EXT_KNOVEL_DISPLAY_bookid=1093
Jridi, M., Abdelhedi, O., Souissi, N., Kammoun, M., Nasri, M. & Ayadi, M. A. (2015). Improvement of the physicochemical, textural and sensory properties of meat sausage by edible cuttlefish gelatin addition. Food Bioscience, 12, 67–72. https://doi.org/10.1016/j.fbio.2015.07.007
Kanie, J., Suzuki, Y., Akatsu, H., Kuzuya, M. & Iguchia, A. (2004). Prevention of late complications by half-solid enteral nutrients in percutaneous endoscopic gastrostomy tube feeding. Gerontology, 50(6), 417–419. https://doi.org/10.1159/000080181
Karayannakidis, P. D. & Zotos, A. (2016). Fish Processing By-Products as a Potential Source of Gelatin: A Review. Journal of Aquatic Food Product Technology, 25(1), 65–92. https://doi.org/10.1080/10498850.2013.827767
Kasapis, S., Morris, E. R., Norton, I. T. & Clark, A. H. (1993). Phase equilibria and gelation in gelatin/maltodextrin systems - Part II: composition-dependence of mixed-gel moduli. Carbohydrate Polymers, 21(4), 269–276. https://doi.org/10.1016/0144-8617(93)90058-C
Lesser, M. N. R. & Lesser, L. I. (2021). Nutrition Support Therapy. American Family Physician, 104(6), 580–588. https://doi.org/10.1007/978-3-642-00418-6_3226
Limketkai, B. N., Shah, N. D., Sheikh, G. N. & Allen, K. (2019). Classifying Enteral Nutrition: Tailored for Clinical Practice. Current Gastroenterology Reports, 21(9). https://doi.org/10.1007/S11894-019-0708-3
Lorén, N., Hermansson, A. M., Williams, M. A. K., Lundin, L., T. J., Foster, C. D., Hubbard, A. H., Clark, I. T., Norton, E. T., Bergström, A, & Goodall, D. M. (2000). Phase Separation Induced by Conformational Ordering of Gelatin in Gelatin/Maltodextrin Mixtures. Macromolecules, 34(2), 289–297. https://doi.org/10.1021/MA0013051
Lorén, N. & Hermansson, A. M. (2000). Phase separation and gel formation in kinetically trapped gelatin/maltodextrin gels. International Journal of Biological Macromolecules, 27(4), 249–262. https://doi.org/10.1016/S0141-8130(00)00127-6
MacDougall, D. B. (2003). SENSORY EVALUATION | Appearance. Encyclopedia of Food Sciences and Nutrition, 5161–5167. https://doi.org/10.1016/B0-12-227055-X/01066-X
Mutlu, C., Tontul, S. A. & Erbaş, M. (2018). Production of a minimally processed jelly candy for children using honey instead of sugar. LWT, 93, 499–505. https://doi.org/10.1016/J.LWT.2018.03.064
Nagai, K., Fukuno, S., Moriwaki, R., Kuroda, H., Omotani, S., Miura, T., Hatsuda, Y., Myotoku, M. & Konishi, H. (2022). Influence of concurrent and staggered dosing of semi-solid nutrients on the pharmacokinetics of orally administered carbamazepine in rats. Die Pharmazie, 77(3), 118–120. https://doi.org/10.1691/2022.1756
Neiser, S., Draget, K. I. & Smidsrød, O. (1999). Interactions in bovine serum albumin-calcium alginate gel systems. Food Hydrocolloids, 13(6), 445–458. https://doi.org/10.1016/S0268-005X(99)00019-3
Nhi, T. T. Y., Vu, N. D., Quyen, N. N., Thinh, P. V., Tho, N. T. M. & Truc, T. T. (2020). The effect of malt, pectin, and gelatin concentrations on elasticity, color and sensory evaluation of soursop (Annona muricata L.) jelly candy. IOP Conference Series: Materials Science and Engineering, 991(1). https://doi.org/10.1088/1757-899X/991/1/012013
Ninan, G., Joseph, J. & Aliyamveettil, Z. A. (2014). A comparative study on the physical, chemical and functional properties of carp skin and mammalian gelatins. Journal of Food Science and Technology, 51(9), 2085. https://doi.org/10.1007/S13197-012-0681-4
Noor, N. Q. I. M., Razali, R. S., Ismail, N. K., Ramli, R. A., Razali, U. H. M., Bahauddin, A. R., Zaharudin, N., Rozzamri, A., Bakar, J. & Shaarani, S. M. (2021). Application of Green Technology in Gelatin Extraction: A Review. Processes 2021, Vol. 9, Page 2227, 9(12), 2227. https://doi.org/10.3390/PR9122227
Norton, I. T. & Frith, W. J. (2001). Microstructure design in mixed biopolymer composites. Food Hydrocolloids, 15(4–6), 543–553. https://doi.org/10.1016/S0268-005X(01)00062-5
Okabe, K., Kaneko, R., Kawai, T., Ohta, Y., Ohara, G. & Hibi, H. (2022). Efficacy of semi-solidification of enteral nutrients for postoperative nutritional management with a nasogastric tube. Nagoya Journal of Medical Science, 84(2), 366–373. https://doi.org/10.18999/NAGJMS.84.2.366
Ong, C. S., Yesantharao, P., Brown, P. M., Canner, J. K., Brown, T. A., Sussman, M. S. & Whitman, G. J. R. (2021). Nutrition Support After Cardiac Surgery: Lessons Learned From a Prospective Study. Seminars in Thoracic and Cardiovascular Surgery, 33(1), 109–115. https://doi.org/10.1053/J.SEMTCVS.2020.06.043
Phillips, G. O. & Williams, P. A. (2009). Handbook of Hydrocolloids: Second Edition. In Handbook of Hydrocolloids: Second Edition. https://doi.org/10.1533/9781845695873
Rahman, M. N. A. & Jamalulail, S. A. S. K. A. (2013). Extractions, Physicochemical Characterizations And Sensory Quality Of Chicken Feet Gelatin. Borneo Science, March, 33–43.
Raja, K. C. M., Sankarikutty, B., Sreekumar, M., Jayalekshmy, A. & Narayanan, C. S. (1989). Material Characterization Studies of Maltodextrin Samples for the Use of Wall Material. Starch - Stärke, 41(8), 298–303. https://doi.org/10.1002/STAR.19890410805
Rawdkuen, S., Thitipramote, N. & Benjakul, S. (2013). Preparation and functional characterisation of fish skin gelatin and comparison with commercial gelatin. International Journal of Food Science & Technology, 48(5), 1093–1102. https://doi.org/10.1111/IJFS.12067
Sabah, S., Sharifan, A., Akhonzadeh Basti, A., Jannat, B. & TajAbadi Ebrahimi, M. (2021). Use of D-optimal combined design methodology to describe the effect of extraction parameters on the production of quinoa–barley malt extract by superheated water extraction. Food Science & Nutrition, 9(4), 2147–2157. https://doi.org/10.1002/FSN3.2184
Sinthusamran, S., Benjakul, S. & Kishimura, H. (2014). Characteristics and gel properties of gelatin from skin of seabass ( Lates calcarifer ) as influenced by extraction conditions. Food Chemistry, 152, 276–284. https://doi.org/10.1016/j.foodchem.2013.11.109
Somboon, N. & Karrila, T. (2014). Properties of gels from mixed agar and fish gelatin. Search.Proquest.Com.https://search.proquest.com/openview/374c7615b456aed410c0accee64a3dda/1?pq-origsite=gscholar&cbl=816390
Sultana, S., Hossain, M. A. M., Zaidul, I. S. M. & Ali, M. E. (2018). Multiplex PCR to discriminate bovine, porcine, and fish DNA in gelatin and confectionery products. LWT, 92, 169–176. https://doi.org/10.1016/J.LWT.2018.02.019
Turgeon, S. L., Beaulieu, M., Schmitt, C. & Sanchez, C. (2003). Protein–polysaccharide interactions: phase-ordering kinetics, thermodynamic and structural aspects. Current Opinion in Colloid & Interface Science, 8(4–5), 401–414. https://doi.org/10.1016/S1359-0294(03)00093-1