Effect of Fennel (Foeniculum Vulgare) on Appetite Hormone; Ghrelin and Adiponectin
Subject Areas : food scienceS. M. Amiri 1 , M. Rahmani 2 , M. Barati 3 , L. Kooshesh 4 , F. Golab 5 , M. Movahedi 6 , M. Yadegari 7
1 - MSc of the Department of Cellular and Molecular Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran.
2 - MSc of the Department of Cellular and Molecular Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran.
3 - Assistant Professor of the Department of Biotechnology, Faculty of Paramedicine, Iran University of Medical Sciences, Tehran, Iran.
4 - MSc of the Department of Cellular and Molecular Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran.
5 - Associate Professor of the Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
6 - Associate Professor of the Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
7 - MSc of the Department of Animal Biology, Karaj Branch, Islamic Azad University, Karaj, Iran
Keywords: Adiponectin, Fennel, Foeniculum vulgare, Ghrelin, Lipid Profile,
Abstract :
Adiponectin and ghrelin are two hormones that have been known as an important regulator of food intake. Traditional medicine has made use of foeniculum vulgare. We evaluated fennel effect on body weight, lipid profile, ghrelin, and adiponectin levels. 35 healthy adult male BALB/C mice that dividing into five groups including; Control, Sham, and treatment with fennel extracts in dose of 50,100 and 200 mg/kg. The injections were daily for 2 weeks. After two weeks, the serum levels of ghrelin and adiponectin were evaluated. Stomach tissue was used to measure the expression of ghrelin and adiponectin receptor by PCR. This study indicated that there was a significant reduction of cholesterol and triglycerides in 50 & 100 mg/kg (99.14285714 ± 0.525, 104.8571429 ± 0.5), and in 200 mg/kg (66.14286± 3.85714) respectively (P<0.05). Serum level concentrations of adiponectin and ghrelin were higher in the fennel 100 mg/kg (1.15625± 0.10) and 200 mg/kg (1.2595± 0.04) respectively (P<0.05). Ghrelin receptor gene expression had decreased in all treated groups; 50, 100 & 200 mg/kg (0.295469± 0.128666, 0.450276± 0.067683, 0.129677± 0.019871), respectively (P<0.05). Adiponectin receptor type 2 gene expression had decreased in all treated groups; 50, 100 & 200 mg/kg (0.5321467± 0.1134928, 0.3770703± 0.0238912, 0.4351948± 0.0667059), respectively (P<0.05). In conclusion, supplementation of fennel could improve of lipid profile, increase serum ghrelin and adiponectin concentration, and decrease their receptors gene expression, which is beneficial for health.
Afiat, M., Amini, E., Ghazanfarpour, M., Nouri, B., Mousavi, M. S., Babakhanian, M. & Rakhshandeh, H. (2018). The effect of short-term treatment with Fennel on lipid profile in postmenopausal women: A randomized controlled trial. Journal of Menopausal Medicine, 24, 29-33. http://doi.org/10.6118/jmm.2018.24.1.29
Al-Sagan, A. A., Khalil, S., Hussein, E. O. & Attia, Y. A. (2020). Effects of fennel seed powder supplementation on growth performance, carcass characteristics, meat quality, and economic efficiency of broilers under thermoneutral and chronic heat stress conditions. Animals, 10, 206. http://doi.org/10.3390/ani10020206
Arifin, W. N. & Zahiruddin, W. M. (2017). Sample size calculation in animal studies using resource equation approach. The Malaysian journal of medical sciences: MJMS, 24, 101. http://doi.org/10.21315/mjms2017.24.5.11
Bae, J., Kim, J., Choue, R. & Lim, H. (2015). Fennel (foeniculum vulgare) and fenugreek (trigonella foenum-graecum) tea drinking suppresses subjective short-term appetite in overweight women. Clinical nutrition research, 4, 168-174. http://doi.org/10.7762/cnr.2015.4.3.168
Buğdayci, K. E., Oğuz, F. K., Oğuz, M. N. & Kuter, E. (2018). Effects of fennel seed supplementation of ration on performance, egg quality, serum cholesterol, and total phenol content of egg yolk of laying quails. Revista Brasileira de Zootecnia, 47. http://doi.org/ 10.1590/rbz4720170160
Chandran, M., Phillips, S. A., Ciaraldi, T. & Henry, R. R. (2003). Adiponectin: more than just another fat cell hormone? Diabetes care, 26, 2442-2450. http://doi.org/10.2337/diacare.26.8.2442
Cho, J., Koh, Y., Han, J., Kim, D., Kim, T. & Kang, H. (2016). Adiponectin mediates the additive effects of combining daily exercise with caloric restriction for treatment of non-alcoholic fatty liver. International Journal of Obesity, 40, 1760. http://doi.org/10.1038/ijo.2016.104
Choi, E.-M. & Hwang, J.-K. (2004). Antiinflammatory, analgesic and antioxidant activities of the fruit of Foeniculum vulgare. Fitoterapia, 75, 557-565. http://doi.org/10.1016/j.fitote.2004.05.005
Cisternas, P., Martinez, M., Ahima, R. S., Wong, G. W. & Inestrosa, N. C. (2018). Modulation of Glucose Metabolism in Hippocampal Neurons by Adiponectin and Resistin. Molecular neurobiology, 1-14. http://doi.org/10.1007/s12035-018-1271-x
Collins, M., Varady, K. A. & Jones, P. J. (2007). Modulation of apolipoprotein A1 and B, adiponectin, ghrelin, and growth hormone concentrations by plant sterols and exercise in previously sedentary humans. Canadian Journal of Physiology and Pharmacology, 85, 903-910. http://doi.org/10.1139/Y07-078
Cummings, D. E. (2006). Ghrelin and the short-and long-term regulation of appetite and body weight. Physiology & Behavior, 89, 71-84. http://doi.org/10.1016/j.physbeh.2006.05.022
Dadalioǧlu, I. & Evrendilek, G. A. (2004). Chemical compositions and antibacterial effects of essential oils of Turkish oregano (Origanum minutiflorum), bay laurel (Laurus nobilis), Spanish lavender (Lavandula stoechas L.), and fennel (Foeniculum vulgare) on common foodborne pathogens. Journal of Agricultural and Food Chemistry, 52, 8255-8260. http://doi.org/10.1021/jf049033e
Doneda, D., Lopes, A. L., Teixeira, B. C., Mittelstadt, S. D., Moulin, C. C. & Schwartz, I. V. (2015). Ghrelin, leptin and adiponectin levels in Gaucher disease type I patients on enzyme replacement therapy. Clinical Nutrition, 34, 727-731. http://doi.org/10.1016/j.clnu.2014.08.010
Dongare, V., Kulkarni, C., Kondawar, M., Magdum, C., Haldavnekar, V. & Arvindekar, A. (2012). Inhibition of aldose reductase and anti-cataract action of trans-anethole isolated from Foeniculum vulgare Mill. fruits. Food Chemistry, 132, 385-390. http://doi.org/10.1016/j.foodchem.2011.11.005
Elgayyar, M., Draughon, F., Golden, D. & Mount, J. (2001). Antimicrobial activity of essential oils from plants against selected pathogenic and saprophytic microorganisms. Journal of Food Protection, 64, 1019-1024. http://doi.org/10.4315/0362-028x-64.7.1019
Elghazaly, N. A., , E. H. R., , H. H. Z., , M. M. E. & , N. E. D. A. (2019). Beneficial Effects of Fennel (foeniculum Vulgare) in Treating Obesity in Rats. Journal of Obesity Management, 1, 1-16. http://doi.org/10.14302/issn.2574-450x.jom-18-2484
English, P., Ghatei, M., Malik, I., Bloom, S. & Wilding, J. (2002). Food fails to suppress ghrelin levels in obese humans. The Journal of Clinical Endocrinology & Metabolism, 87, 2984-2987. http://doi.org/10.1210/jcem.87.6.8738
Fatouros, I., Tournis, S., Leontsini, D., Jamurtas, A., Sxina, M., Thomakos, P., Manousaki, M., Douroudos, I., Taxildaris, K. & Mitrakou, A. (2005). Leptin and adiponectin responses in overweight inactive elderly following resistance training and detraining are intensity related. The Journal of Clinical Endocrinology & Metabolism, 90, 5970-5977. http://doi.org/10.1210/jc.2005-0261
Friedewald, W. T., Levy, R. I. & Fredrickson, D. S. (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical chemistry, 18, 499-502.
Galisteo, M., Sánchez, M., Vera, R. O., González, M., Anguera, A., Duarte, J. & Zarzuelo, A. (2005). A diet supplemented with husks of Plantago ovata reduces the development of endothelial dysfunction, hypertension, and obesity by affecting adiponectin and TNF-α in obese Zucker rats. The Journal of Nutrition, 135, 2399-2404. http://doi.org/10.1093/jn/135.10.2399
Gharaghani, H., Shariatmadari, F. & Torshizi, M. (2015). Effect of fennel (Foeniculum vulgare Mill.) used as a feed additive on the egg quality of laying hens under heat stress. Brazilian Journal of Poultry Science, 17, 199-207. http://doi.org/10.1590/1516-635X1702199-208
Ghazanfarpour, M., Najafi, M. N., Sharghi, N. B., Mousavi, M. S., Babakhanian, M. & Rakhshandeh, H. (2018). A double-blind, placebo-controlled trial of Fennel (Foeniculum vulgare) on menopausal symptoms: A high placebo response. Journal of the Turkish German Gynecological Association, 19, 122. http://doi.org/10.4274/jtgga.2017.0124
Gupta, R. K., Rosen, E. D. & Spiegelman, B. M. (2011). Identifying novel transcriptional components controlling energy metabolism. Cell metabolism, 14, 739-745. http://doi.org/10.1016/j.cmet.2011.11.007
Helal, E. G., Eid, F. A., El-Wahsh, A. M. & Ahmed, D. (2011). Effect of fennel (Foeniculum vulgare) on hyperlipidemic rats. The Egyptian Journal of Hospital Medicine, 31, 1-28. http://doi.org/10.12816/EJHM.2011.16779
Hodgson, I., Stewart, J. & Fyfe, L. (1998). Inhibition of bacteria and yeast by oil of fennel and paraben: development of synergistic antimicrobial combinations. Journal of Essential Oil Research, 10, 293-297. https://doi.org/10.1080/10412905.1998.9700902
Hur, M. H., Kim, C., Kim, C. H., Ahn, H. C. & Ahn, H. Y. (2006). The effects of inhalation of essential oils on the body weight, food efficiency rate and serum leptin of growing SD rats. Journal of Korean Academy of Nursing, 36, 236-243. http://doi.org/10.4040/jkan.2006.36.2.236
Jang, S. H. & Yang, D. K. (2018). The combination of Cassia obtusifolia L. and Foeniculum vulgare M. exhibits a laxative effect on loperamide-induced constipation of rats. PloS one, 13, e0195624. http://doi.org/10.1371/journal.pone.0195624
Javanmardi, M. A., Mohammad Shahi, M., Seyedian, S. S. & Haghighizadeh, M. H. (2018). Effects of Phytosterol Supplementation on Serum Levels of Lipid Profiles, Liver Enzymes, Inflammatory Markers, Adiponectin, and Leptin in Patients Affected by Nonalcoholic Fatty Liver Disease: A Double-Blind, Placebo-Controlled, Randomized Clinical Trial. Journal of the American College of Nutrition, 1-8. http://doi.org/10.1080/07315724.2018.1466739
Kadowaki, T. & Yamauchi, T. (2005). Adiponectin and adiponectin receptors. Endocrine reviews, 26, 439-451. Kadowaki, T. & Yamauchi, T. (2005). Adiponectin and adiponectin receptors. Endocrine Reviews, 26, 439-451. http://doi.org/10.1210/er.2005-0005
Kadowaki, T., Yamauchi, T. & Kubota, N. (2008). The physiological and pathophysiological role of adiponectin and adiponectin receptors in the peripheral tissues and CNS. FEBS Letters, 582, 74-80. http://doi.org/10.1016/j.febslet.2007.11.070
Khaleel, E. F. & Abdel-Aleem, G. A. (2018). Obestatin protects and reverses nonalcoholic fatty liver disease and its associated insulin resistance in rats via inhibition of food intake, enhancing hepatic adiponectin signaling, and blocking ghrelin acylation. Archives of Physiology and Biochemistry, 1-15. http://doi.org/10.1080/13813455.2018.1437638
Khan, R. U., Fatima, A., Naz, S., Ragni, M., Tarricone, S. & Tufarelli, V. (2022). Perspective, opportunities and challenges in using fennel (Foeniculum vulgare) in poultry health and production as an eco-friendly alternative to antibiotics: a review. Antibiotics, 11, 278. http://doi.org/10.3390/antibiotics11020278
Kim, S. J., Kim, K. S., Choi, Y. M., Kang, B. G., Yoon, Y. S., Oh, M. S., Yoon, I. J. & Shin, S. U. (2005). A clinical study of decrease appetite effects by aromatherapy using foeniculum vulgare mill (fennel) to female obese patients. Journal of Korean Medicine for Obesity Research, 5.
Laursen, T. L., Zak, R. B., Shute, R. J., Heesch, M. W., Dinan, N. E., Bubak, M. P., La Salle, D. T. & Slivka, D. R. (2017). Leptin, adiponectin, and ghrelin responses to endurance exercise in different ambient conditions. Temperature, 4, 166-175. http://doi.org/10.1080/23328940.2017.1294235
Lv, Y., Liang, T., Wang, G. & Li, Z. (2018). Ghrelin, a gastrointestinal hormone, regulates energy balance and lipid metabolism. Bioscience reports, 38, BSR20181061. http://doi.org/10.1042/BSR20181061
Mahmoudi, Z. & Soleimani, M. (2013). Effects of Foeniculum vulgare ethanol extract on osteogenesis in human mecenchymal stem cells. Avicenna Journal of Phytomedicine, 3, 135 http://doi.org/10.22038/ajp.2013.3
Mahmud, H. A. (2014). Response of growing Japanese quail to different levels of fennel seeds meal. Egyptian Poultry Science Journal, 34.
Meier, U. & Gressner, A. M. (2004). Endocrine regulation of energy metabolism: review of pathobiochemical and clinical chemical aspects of leptin, ghrelin, adiponectin, and resistin. Clinical Chemistry, 50, 1511-1525. http://doi.org/10.1373/clinchem.2004.032482
Mohamed-Ali, V., Pinkney, J. & Coppack, S. (1998). Adipose tissue as an endocrine and paracrine organ. International Journal of Obesity, 22, 1145. http://doi.org/10.1038/sj.ijo.0800770
Nejatbakhsh, R., Riyahi, S., Farrokhi, A., Rostamkhani, S., Mahmazi, S., Yazdinezhad, A., Kazemi, M. & Shokri, S. (2017). Ameliorating effects of fennel and cumin extracts on sperm quality and spermatogenic cells apoptosis by inducing weight loss and reducing leptin concentration in diet‐induced obese rats. Andrologia, 49, e12748. http://doi.org/10.1111/and.12748
Oulmouden, F., Ghalim, N., El Morhit, M., Benomar, H., Daoudi, E. M. & Amrani, S. (2014). Hypolipidemic and anti-atherogenic effect of methanol extract of fennel (Foeniculum vulgare) in hypercholesterolemic mice. IJSK, 3, 42-52.
Parejo, I., Jauregui, O., Sánchez-Rabaneda, F., Viladomat, F., Bastida, J. & Codina, C. (2004). Separation and characterization of phenolic compounds in fennel (Foeniculum vulgare) using liquid chromatography− negative electrospray ionization tandem mass spectrometry. Journal of Agricultural and Food Chemistry, 52, 3679-3687. http://doi.org/10.1021/jf030813h
Platel, K. & Srinivasan, K. (2001). Studies on the influence of dietary spices on food transit time in experimental rats. Nutrition Research, 21, 1309-1314. http://doi.org/10.1016/S0271-5317(01)00331-1
Poorebrahim, M., Asghari, M., Abazari, M. F., Askari, H., Sadeghi, S., Taheri-Kafrani, A., Nasr-Esfahani, M. H., Ghoraeian, P., Aleagha, M. N. & Arab, S. S. (2018). immunomodulatory effects of a rationally designed peptide mimetic of human Ifnβ in Eae model of multiple sclerosis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 82, 49-61. http://doi.org/10.1016/j.pnpbp.2017.11.028
Prestwood, K. M., Kenny, A. M., Kleppinger, A. & Kulldorff, M. (2003). Ultralow-dose micronized 17β-estradiol and bone density and bone metabolism in older women: a randomized controlled trial. Jama, 290, 1042-1048. http://doi.org/10.1001/jama.290.8.1042
Ragab, M. S. (2007). Effects of using fennel seeds in growing Japanese quail diets varying in their protein content with or without enzyme supplementation. Fayoum Journal of Agricultural Research and Development, 21, 113-136.
Rosen, E. D. & Spiegelman, B. M. (2014). What we talk about when we talk about fat. Cell, 156, 20-44. http://doi.org/10.1016/j.cell.2013.12.012
Safaei-Cherehh, A., Rasouli, B., Alaba, P. A., Seidavi, A., Hernández, S. R. & Salem, A. Z. (2020). Effect of dietary Foeniculum vulgare Mill. extract on growth performance, blood metabolites, immunity and ileal microflora in male broilers. Agroforestry Systems, 94, 1269-1278. http://doi.org/10.1007/s10457-018-0326-3
Sahin, S., Yuce, M., Alacam, H., Karabekiroglu, K., Say, G. N. & Salıs, O. (2014). Effect of methylphenidate treatment on appetite and levels of leptin, ghrelin, adiponectin, and brain-derived neurotrophic factor in children and adolescents with attention deficit and hyperactivity disorder. International Journal of Psychiatry in Clinical Practice, 18, 280-287. http://doi.org/10.3109/13651501.2014.940054
Saki, A., Kalantar, M., Rahmatnejad, E. & Mirzaaghatabar, F. (2014). Health characteristics and performance of broiler chicks in response to Trigonella foenum graecum and Foeniculum vulgare. Iranian Journal of Applied Animal Science, 4, 387-391.
Saleh, L., Pal Singh, R. & Nagar, S. (2018). Efficacy of Foeniculum vulgare seeds powder on growth performance in broiler. International Journal of Food Science and Nutrition, 3, 167-170.
Shahat, A. A., Ahmed, H. H., Hammouda, F. M. & Ghaleb, H. (2012). Regulation of Obesity and Lipid Disorders by Foeniculum vulgare Extracts and Plantago ovata in High-fat Diet-induced Obese Rats. American Journal of Food Technology, 7, 622-632. http://doi.org/10.3923/ajft.2012.622.632
Soltan, M., Shewita, R. & El-Katcha, M. (2008). Effect of dietary anise seeds supplementation on growth performance, immune response, carcass traits and some blood parameters of broiler chickens. International Journal of Poultry Science, 7, 1078-1088. http://doi.org/10.3923/ijps.2008.1078.1088
Sowers, J. R. (2008). Endocrine functions of adipose tissue: focus on adiponectin. Clinical Cornerstone, 9, 32-40. http://doi.org/10.1016/s1098-3597(08)60026-5
Soylu, S., Yigitbas, H., Soylu, E. & Kurt, Ş. (2007). Antifungal effects of essential oils from oregano and fennel on Sclerotinia sclerotiorum. Journal of Applied Microbiology, 103, 1021-1030. http://doi.org/10.1111/j.1365-2672.2007.03310.x
St‐Onge, M. P. & Jones, P. J. (2003). Phytosterols and human lipid metabolism: efficacy, safety, and novel foods. Lipids, 38, 367-375. http://doi.org/10.1007/s11745-003-1071-3
Tokede, O. A., Onabanjo, T. A., Yansane, A., Gaziano, J. M. & Djoussé, L. (2015). Soya products and serum lipids: a meta-analysis of randomised controlled trials. British Journal of Nutrition, 114, 831-843. http://doi.org/10.1017/S0007114515002603
Trayhurn, P. (2005). Endocrine and signalling role of adipose tissue: new perspectives on fat. Acta Physiologica Scandinavica, 184, 285-293. http://doi.org/10.1111/j.1365-201X.2005.01468.x
Trayhurn, P., Bing, C. & Wood, I. S. (2006). Adipose tissue and adipokines—energy regulation from the human perspective. The Journal of Nutrition, 136, 1935S-1939S. http://doi.org/10.1093/jn/136.7.1935S
Trayhurn, P. & Wood, I. (2005). Signalling role of adipose tissue: adipokines and inflammation in obesity. Portland Press Limited. http://doi.org/10.1042/BST0331078
Tschöp, M., Smiley, D. L. & Heiman, M. L. (2000). Ghrelin induces adiposity in rodents. Nature, 407, 908. http://doi.org/10.1038/35038090
Tschöp, M., Weyer, C., Tataranni, P. A., Devanarayan, V., Ravussin, E. & Heiman, M. L. (2001). Circulating ghrelin levels are decreased in human obesity. Diabetes, 50, 707-709. http://doi.org/10.2337/diabetes.50.4.707
Wang, Y., Zhou, M., Lam, K. S. & Xu, A. (2009). Protective roles of adiponectin in obesity-related fatty liver diseases: mechanisms and therapeutic implications. Arquivos Brasileiros de Endocrinologia & Metabologia, 53, 201-212. http://doi.org/10.1590/s0004-27302009000200012
Wulster-Radcliffe, M. C., Ajuwon, K. M., Wang, J., Christian, J. A. & Spurlock, M. E. (2004). Adiponectin differentially regulates cytokines in porcine macrophages. Biochemical and Biophysical Research Communications, 316, 924-929. http://doi.org/10.1016/j.bbrc.2004.02.130
Wynne, K., Sarah, S., Mcgowan, B. & Bloom, S. (2005). Starling review. Appetite control. Journal of Endocrinol, 184, 291-318. http://doi.org/10.1677/joe.1.05866
Yamauchi, T., Kamon, J., Waki, H., Terauchi, Y., Kubota, N., Hara, K., Mori, Y., Ide, T., Murakami, K. & Tsuboyama-Kasaoka, N. (2001). The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nature Medicine, 7, 941. http://doi.org/10.1038/90984
Zahira, A., Abdullah, W., Sand, R. & Majal, K. (2017). Effect Of dietary supplementation of coriander and fennel seed powder and their mixture on productional and physiological performance of broiler. Al-Qadisiyah Journal of Veterinary Medicine Sciences, 17, 135-149. http://doi.org/10.29079/vol17iss2art519