Satellite indicators in drought monitoring in Iran
Subject Areas : Natural resource management
1 - Department of Geography, Payame Noor University, Tehran, Iran
Keywords: : infrared band, red band, satellite drought, Iran,
Abstract :
ought is a natural manifestation influenced by climatic conditions and is considered one of Iran's significant morphoclimatic phenomena. The appearance of this phenomenon is linked to variations in climatic elements such as temperature and precipitation. Drought, as a destructive climatic event, can have adverse effects on the ecology of any region if not properly managed, with its economic losses being a crucial feedback. Effective monitoring of drought is essential for its management. In this research, the most practical indicators for satellite monitoring of drought have been defined and implemented using meteorological satellite images. This method proves to be more economical and time-efficient compared to traditional methods, including field monitoring. The analysis of satellite indicators revealed that, firstly, the electromagnetic spectrum ranges of 670 nm (red band) and 765 nm (infrared band) are commonly utilized in all plant indicators. Secondly, the output map generated from these indicators demonstrates their high efficacy in revealing vegetation changes and, consequently, monitoring drought.
Afzali Kardamehle, P., & Behzadi, S. (2023), Comparison of Drought in Golestan And Semnan Provinces By Satellite Data with Vegetation Condition Index (VCI) Measurement, 3rd National Conference on Water Resource Management Strategies and Environmental Challenges, Tarbiat Debir Shahid Rajaee University, Tehran, Iran. [In Persian]
Alizadeh, A., Ansari, H., Ershadi, S., & Ashgar Toosi, S. (2009). Drought Predictability in the Province of Sistan and Balouchestan. Journal of Geography and Regional Development, (11) 11, Pages 1-18. [In Persian] (SID. https://sid.ir/paper/99050/en)
Antonio, P., Aquino França, L.M., & Galvincio, J. (2012). Relationship between Vegetation Indices and Altimetry in Triunfo-Pe, Brazil, Journal of Hyperspectral Remote Sensing, 2(3), 37-43.
Chopra, P. (2006). Drought Risk Assessment Using Remote Sensing and GIS: a Case Study of Gujarat, ITC and IIRS, Thesis for the Degree of Master of Science in Geo-Information Science and Earth Observation in Hazard & Risk Analysis.12-14.
Fazel Dehkordi, L., Azarnivand, H., Zare Chahouki, M. A., Mahmoudi Kohan, F., & Khalighi Sigaroudi, S. (2016). Drought Monitoring Using Vegetation Index (NDVI) (Case study: Rangelands of Ilam Province). Journal of Range and Watershed Managment, 69(1), 141-154. doi: 10.22059/jrwm.2016.61739) [In Persian]
Dos Santos Pereira, J. A., De Aquino França, L. M., & Galvíncio, J. D. (2012). Relationship Between Vegetation Indices and Altimetry in Triunfo-PE, Brazil. Journal of Hyperspectral Remote Sensing, 2(3), 37-43.
Farajzadeh Assal, M. (2005). Drought from the Concept to the Solution, Publications of the Geographical Organization of The Armed Forces, 120 Pages. [In Persian]
Fred, P. (2013). Seawifs Status, Ocean Biology Processing Group, Power Point Issuance, 1-8.
Huete, A., Justice, C., & Van Leeuwen, W. (1999). MODIS Vegetation Index (MOD13). Algorithm Theoretical Basis Document, 3(213), 295-309.
Jensen, J.R. (2005). Introductory Digital Image Processing: a Remote Sensing Perspective. Prentice Hall Series in Geographic Information Science, 526PP.
Pourbagher Kurdi S.M. (2012). Application of Sea Wifs Satellite Images in Drought Monitoring, Proceedings of the 2nd International Conference on Environmental Hazards, Khwarazmi University, Tehran, Iran, November 7-13. [In Persian]
Safari, H. (2003), Drought Assessment Using ANHRR Images in Zabul Region. Master's Degree Thesis, Department of Remote Sensing and GIS, Shahid Beheshti University, Tehran. [In Persian]
Shabani, M. (2022), Evaluation of Indicators Based on Remote Sensing in Drought Monitoring of Niriz City, Remote Sensing and Geographic Information System in Natural Resources, (13) 4: 131-147. [In Persian]
Taherzadeh, S.A., Ziaian, P., & Farajzadeh, M. (2006), Drought Analysis Using Remote Sensing and GIS Techniques, A Case Study of Minab City, Tarbiat Modares University Master's Thesis on Remote Sensing, 42-44. [In Persian]
Tavazehi, A., & Ahmadi Nadoushan, M. (2016), Drought Survey of Zayandeh Rodd Area Using SPI Index, National Conference on Civil Engineering, Environment and Sustainable Land, Mashhad, Iran. [In Persian]
Thenkabail, P. S., & Gamage, M. S. D. N. (2004). The Use of Remote Sensing Data for Drought Assessment and Monitoring in Southwest Asia (85). Iwmi.
Wang, P.X., Li, X.W., Gong, J.Y., & Song, C. (2004). Vegetation Temperature Condition Index and Its Application for Drought Monitoring. International Journal of Remote Sensing, 23, 578–592.