Effects of exposure to Sericin during gestation on brain growth factor and antioxidant levels following parturition in mice
Subject Areas : Physiology
Shahla Fadaei
1
,
Shahin Hassanpour
2
*
,
Akram Eidi
3
,
Morteza Zendehdel
4
1 - Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 - Department of Veterinary Basic Sciences, SR.C., Islamic Azad University, Tehran, Iran
3 - Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
4 - Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
Keywords: Sericin, Brain growth factor, Antioxidant, Parturition, Mice,
Abstract :
This paper aimed to determine effects of exposure to Sericin during gestation on brain growth factor and antioxidant levels following parturition in mice. Pregnant mice were randomly assigned to four groups. Pregnant mice in the control group were provided with water as a fake treatment, while pregnant female mice in groups 2-4 were given sericin orally (112.5, 225, and 450 mg/kg) on various days of pregnancy (5, 8, 11, 14, and 17). Following parturition, the animals were euthanized by decapitation, the skulls were dissected to obtain brain samples from mothers to measure the levels of the Brain-derived neurotrophic factor (BDNF), myelin/oligodendrocyte glycoprotein (MOG), myelin-associated glycoprotein (MAG), myelin Basic Protein (MBP), as well as cortical and sub-cortical malondialdehyde (MDA), glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) levels were determined. Based on findings, exposure to sericin during gestation in a dose dependent manner and significantly increased levels of the BDNF, MAG, MBP in postpartum mice compared to control group (P<0.05). Also, sericin exposure during pregnancy in a dose dependent manner significantly decreased MOG levels in postpartum mice compared to control group (P<0.05). Exposure to sericin in a dose dependent manner decreased cortical and sub-cortical MDA and increased SOD, GPx and CAT levels compared to control group (P<0.05). Findings of this study show that sericin can play an important protective and regulatory role in the brain function following parturition in mice.
[1] Hu D, Li T, Wang Y, Feng M, Sun J. Silk sericin as building blocks of bioactive materials for advanced therapeutics. Journal of Controlled Release. 2023; 353:303-316. doi:10.1016/j.jconrel.2022.11.019
[2] Ampawong S, Tirawanchai N, Kanjanapruthipong T, Fongsodsri K, Tuentam K, Isarangkul D, et al. Sericin enhances ammonia detoxification by promotes urea cycle enzyme genes and activates hepatic autophagy in relation to CARD-9/MAPK pathway. Heliyon. 2023; 9(11).
doi:10.1016/j.heliyon.2023.e21563
[3] Magaquian D, Delgado Ocaña S, Perez C, Banchio C. Phosphatidylcholine restores neuronal plasticity of neural stem cells under inflammatory stress. Scientific reports. 2021; 11(1): 22891.
doi:10.1038/s41598-021-02361-5
[4] Dong X, Zhao S-X, Yin X, Wang HY, Wei Z-G, Zhang Y-Q. Silk sericin has significantly hypoglycaemic effect in type 2 diabetic mice via anti-oxidation and anti-inflammation. International journal of biological macromolecules. 2019.
doi:10.1016/j.ijbiomac.2019.10.111
[5] Nogami Ki, Maruyama Y, Sakai‐Takemura F, Motohashi N, Elhussieny A, Imamura M, et al. Pharmacological activation of SERCA ameliorates dystrophic phenotypes in dystrophin-deficient mdx mice. Human Molecular Genetics. 2021; 30:1006 - 1019.
doi:10.1093/hmg/ddab100
[6] Zhaorigetu S, Yanaka N, Sasaki M, Watanabe H, Kato N. Silk protein, sericin, suppresses DMBA-TPA-induced mouse skin tumorigenesis by reducing oxidative stress, inflammatory responses and endogenous tumor promoter TNF-alpha. Oncology reports. 2003; 10 3: 537-543. doi:10.3892/or.10.3.537
[7] Rahimpour S, Jabbari H, Yousofi H, Fathi A, Mahmoodi S, Jafarian MJ, et al. Regulatory effect of sericin protein in inflammatory pathways; A comprehensive review. Pathology, research and practice. 2023; 243: 154369.
doi:10.1016/j.prp.2023.154369
[8] Farajdokht F, Vatandoust SM, Hosseini L, Fekri K, Aghsan SR, Majdi A, et al. Sericin protects against acute sleep deprivation-induced memory impairment via enhancement of hippocampal synaptic protein levels and inhibition of oxidative stress and neuroinflammation in mice. Brain research bulletin. 2021; 174 :203-211.
doi:10.1016/j.brainresbull.2021.06.013
[9] Salari Z, Ashabi G, Fartoosi A, Fartoosi A, Shariatpanahi M, Aghsami M, et al. Sericin alleviates motor dysfunction by modulating inflammation and TrkB/BDNF signaling pathway in the rotenone-induced Parkinson’s disease model. BMC Pharmacology & Toxicology. 2023; 24.
doi:10.1186/s40360-023-00703-9
[10] Young-ae Kim, Eun-hwa Song, Shin Gyeong-oh, Lee Yong-moon, Jo Yoon-hee, editors. Effect of dietary supply of silk protein on changes in sphingoid base and phosphate content in the epidermis of NC/Nga Mice, an atopic dermatitis animal model. 2012. doi:10.4163/kjn.2012.45.2.113
[11] Mohammadi AB, Torbati M, Farajdokht F, Sadigh-Eteghad S, Fazljou SMB, Vatandoust SM, et al. Sericin alleviates restraint stress induced depressive-and anxiety-like behaviors via modulation of oxidative stress, neuroinflammation and apoptosis in the prefrontal cortex and hippocampus. Brain research. 2019; 1715: 47-56.
doi:10.1016/j.brainres.2019.03.020
[12] Delarasse C, Daubas P, Mars LT, Vizler C, Litzenburger T, Iglesias A, et al. Myelin/oligodendrocyte glycoprotein–deficient (MOG-deficient) mice reveal lack of immune tolerance to MOG in wild-type mice. The Journal of clinical investigation. 2003; 112(4): 544-553.
doi:10.1172/JCI200315861
[13] Kawano Y, Yating H, Sasaki M, Furuya S. Silk sericin intake leads to increases in L-serine and L-tyrosine levels in the mouse brain and the simultaneous facilitation of brain noradrenergic turnover. Bioscience, Biotechnology, and Biochemistry. 2020; 84: 372-379. doi:10.1080/09168451.2019.1676693
[14] Fruttiger M, Montag D, Schachner M, Martini R. Crucial role for the myelin‐associated glycoprotein in the maintenance of axon‐myelin integrity. European Journal of Neuroscience. 1995; 7(3): 511-115.
doi:10.1111/j.1460-9568.1995.tb00347
[15] Chiba S, Numakawa T, Ninomiya M, Richards MC, Wakabayashi C, Kunugi H. Chronic restraint stress causes anxiety-and depression-like behaviors, downregulates glucocorticoid receptor expression, and attenuates glutamate release induced by brain-derived neurotrophic factor in the prefrontal cortex. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2012; 39(1): 112-119.
doi:10.1016/j.pnpbp.2012.05.018
[16] Aleksandr S, Alexey G. Role of the MBP protein in myelin formation and degradation in the brain. Biological Communications. 2022; 67(2): 127-138.
doi:10.21638/spbu03.2022.206
[17] Khodadadeh A, Hassanpour S, Akbari G. Prenatal exposure to hesperidin improves reflexive motor behaviors in mice offspring. International Journal of Developmental Neuroscience. 2020. doi:10.1002/jdn.10060
[18] Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain. 1983; 16(2): 109-110.
. doi:10.1016/0304-3959(83)90201-4
[19] Singh MP, Singh K, Shukla S, Dikshit M. Assessment of in-utero venlafaxine induced, ROS-mediated, apoptotic neurodegeneration in fetal neocortex and neurobehavioral sequelae in rat offspring. International Journal of Developmental Neuroscience. 2015; 40: 60-69. doi:10.1016/j.ijdevneu.2014.10.007
[20] Deori M, Devi D, Kumari S, Hazarika A, Kalita H, Sarma RJ, et al. Antioxidant Effect of Sericin in Brain and Peripheral Tissues of Oxidative Stress Induced Hypercholesterolemic Rats. Frontiers in Pharmacology. 2016; 7.
doi:10.3389/fphar.2016.00319
[21] Salloway SP, Cummings JL. Subcortical Structures and Neuropsychiatric Illness. The Neuroscientist. 1996; 2: 66-75.
doi:10.1177/107385849600200114
[22] Ardiani Y, Defrin D, Yetti H. Kajian Pustaka: Kadar Brain Derived Neurotrophic Factor Mempengaruhi Berat Badan Lahir pada Bayi. Jurnal Ilmiah Universitas Batanghari Jambi. 2019.
doi:10.33087/jiubj.v19i1.576
[23] Kowiański P, Lietzau G, Czuba E, Waśkow M, Steliga A, Morys J. BDNF: A Key Factor with Multipotent Impact on Brain Signaling and Synaptic Plasticity. Cellular and Molecular Neurobiology. 2017; 38: 579 - 593.
doi:10.1007/s10571-017-0510-4
[24] Chekhonin VP, Semenova AV, Gurina OI, Dmitrieva TB. Myelin oligodendrogliocyte glycoprotein: the structure, functions, role in pathogenesis of demyelinating disorders. Biomeditsinskaia khimiia. 2003; 49(5): 411-423.
doi:10.1046/j.1471-4159.1999.0720001.x.
[25] Scolding NJ, Frith S, Linington C, Morgan BP, Campbell AK, Compston DAS. Myelin-oligodendrocyte glycoprotein (MOG) is a surface marker of oligodendrocyte maturation. Journal of Neuroimmunology. 1989; 22: 169-176.
doi:10.1016/0165-5728(89)90014-3
[26] Hokama H, Sakamoto Y, Hayashi T, Hatake S, Takahashi M, Kodera H, et al. FLAMES with Elevated Myelin Basic Protein Followed by Myelitis. Internal Medicine. 2022; 61(23): 3585-3588.
doi:10.2169/internalmedicine.9439-22
[27] Nakahara J, Tan-Takeuchi K, Seiwa C, Yagi T, Aiso S, Kawamura K, et al. Myelin basic protein is necessary for the regulation of myelin-associated glycoprotein expression in mouse oligodendroglia. Neuroscience letters. 2001; 298(3): 163-166.
doi:10.1016/S0304-3940(00)01745-6
[28] Lee YA, Lee JH, Oh KH, Chang N. Effects of folic acid on the myelin basic protein expression in the maternal brain. The FASEB Journal. 2008; 22. doi:10.1096/fasebj.22.1
[29] Shenfeld A, Galkin A. Role of the MBP protein in myelin formation and degradation in the brain. Biological Communications. 2022.
doi:10.21638/spbu03.2022.206
[30] Eunhye Chae, Sujeong Kim, Hwayoung Lee, editors. (Myelin Basic Protein) 발현에 미치는 영향. Korean Journal of Nutrition. 2007; 40(2): 130-137.
[31] Chao CC, Chiang CH, Ma Y-L, Lee EHY. Molecular mechanism of the neurotrophic effect of GDNF on DA neurons: role of protein kinase CK2. Neurobiology of Aging. 2006; 27: 105-118.
doi:10.1016/j.neurobiolaging.2005.01.009
[32] Hong W. Effects of brain derived neurotrophic factor on ion channel. Chinese Journal of Clinical Pharmacology and Therapeutics. 2008.
[33] Saini N. The Interplay between Brain-Derived Neurotrophic Factors and Stress Hormone Modulates the Process of Neurogenesis. Current Trends in Biomedical Engineering & Biosciences. 2018. doi:10.19080/CTBEB.2018.17.555951
[34] Umemori H, Kadowaki Y, Hirosawa K, Yoshida Y, Hironaka K, Okano H, et al. Stimulation of myelin basic protein gene transcription by Fyn tyrosine kinase for myelination. Journal of Neuroscience. 1999; 19(4):1393-1397.
doi:10.1523/JNEUROSCI.19-04-01393
[35] Ramos-Cejudo J, Gutiérrez-Fernández M, Otero-Ortega L, Rodríguez-Frutos B, Fuentes B, Vallejo-Cremades MT, et al. Brain-derived neurotrophic factor administration mediated oligodendrocyte differentiation and myelin formation in subcortical ischemic stroke. Stroke. 2015; 46(1): 221-228.
doi:10.1161/STROKEAHA.114.006692