Effect of high intensity interval training with nanocurcumin on fertility and oxidative index in diabetic rats
Subject Areas : Physiology
1 - Department of Physical Education, Faculty of Science, Urmia Branch, Islamic Azad University, Urmia, Iran
Keywords: Diabetes, High interval intensity training, Oxidative stress, Nanocurcumin, Male wistar rats,
Abstract :
This study examines the combined effects of high-intensity interval training and Nanocurcumin on sperm quality and oxidative stress parameters in diabetic rats. Forty male Wistar rats (two months old, 200 ± 5g) were randomly assigned to five groups: control, diabetic mellitus (DM), DM with Nanocurcumin, DM with high-intensity interval training, and DM with both Nanocurcumin and high-intensity interval training. Diabetes which received a high-fat and high fructose diet for 2 months followed by a single intraperitoneal injection of streptozotocin, and the Nanocurcumin and high-intensity interval training groups received their respective treatments for two months. Sperm count, motility, viability, DNA integrity, testosterone levels, and oxidative stress markers, including malondialdehyde (MDA), total antioxidant capacity (TAC), and catalase (CAT), were evaluated. Data were analyzed using SPSS version 18.0, applying a one-way ANOVA to assess group differences, followed by Tukey’s post-hoc test for pairwise comparisons (p < 0.05). Diabetic rats demonstrated a reduction in sperm count, motility, and viability, alongside increased sperm DNA damage, decreased testosterone levels, and elevated MDA levels. Both Nanocurcumin and high-intensity interval training improved these parameters. The combination of Nanocurcumin and high-intensity interval training led to the most significant improvements, including higher sperm count, motility, and viability, reduced DNA damage, increased testosterone levels, and enhanced total antioxidant capacity, along with decreased MDA levels. Overall, the combined intervention of high-intensity interval training and Nanocurcumin effectively improves sperm quality and mitigates oxidative stress in diabetic rats.
[1] Elbe H, Vardi N, Esrefoglu M, Ates B, Yologlu S, Taskapan C. Amelioration of streptozotocin-induced diabetic nephropathy by melatonin, quercetin, and resveratrol in rats. Human & Experimental Toxicology. 2015; 34(1): 100-113. doi:10.1177/0960327114531995
[2] Kandemir FM, Ozkaraca M, Küçükler S, Caglayan C, Hanedan B. Preventive effects of hesperidin on diabetic nephropathy induced by streptozotocin via modulating TGF-β1 and oxidative DNA damage. Toxin Reviews. 2018; 37(4): 287-293.
doi:10.1080/15569543.2017.1364268
[3] Aksu EH, Kandemir FM, Küçükler S. Ameliorative effect of hesperidin on streptozotocin-diabetes mellitus-induced testicular DNA damage and sperm quality degradation in Sprague-Dawley rats. Journal of Food Biochemistry. 2021; 45(10): e13938. doi:10.1111/jfbc.13938
[4] Ding GL, Liu Y, Liu ME, Pan JX, Guo MX, Sheng JZ, Huang HF. The effects of diabetes on male fertility and epigenetic regulation during spermatogenesis. Asian Journal of Andrology. 2015; 17(6): 948-953.
doi:10.4103/1008-682X.150844
[5] Ghanbari E, Nejati V, Azadbakht M. Protective effect of royal jelly against renal damage in streptozotocin-induced diabetic rats. Iranian Journal of Toxicology. 2015; 9(28): 1258-1263.
[6] Zhang S, Xu H, Yu X, Wu YI, Sui D. Metformin ameliorates diabetic nephropathy in a rat model of low-dose streptozotocin-induced diabetes. Experimental and Therapeutic Medicine. 2017; 14(1): 383-390. doi:10.3892/etm.2017.4475
[7] Tan MH, Alquraini H, Mizokami-Stout K, MacEachern M. Metformin: from research to clinical practice. Endocrinology and Metabolism Clinics. 2016; 45(4): 819-843. doi:10.1016/j.ecl.2016.06.008
[8] Carro E, Trejo JL, Busiguina S, Torres-Aleman I. Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. Journal of Neuroscience. 2001; 21(15): 5678-5684.
doi:10.1523/JNEUROSCI.21-15-05678.2001
[9] Tillerson JL, Caudle WM, Reveron ME, Miller GW. Exercise induces behavioral recovery and attenuates neurochemical deficits in rodent models of Parkinson's disease. Neuroscience. 2003; 119(3): 899-911.
doi:10.1016/s0306-4522(03)00096-4
[10] Aune D, Norat T, Leitzmann M, Tonstad S, Vatten LJ. Physical activity and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis. European Journal of Epidemiology. 2015; 30: 529-542.
doi:10.1007/s10654-015-0056-z
[11] Das K. Turmeric (Curcuma longa) oils. In Essential Oils in Food Preservation, Flavor and Safety. Academic Press. 2016; 835-841
[12] Tanvir EM, Hossen MS, Hossain MF, Afroz R, Gan SH, Khalil MI, et al. Antioxidant properties of popular turmeric (Curcuma longa) varieties from Bangladesh. Journal of Food Quality. 2017(1): 8471785.
doi:10.1155/2017/8471785
[13] Maiti R, Roy U, Das S, Das A. Antifertility effect of curcumin, an indigenous medicine, in rats. International Journal of Basic and Clinical Pharmacology. 2021; 10(2): 167-171.
doi:10.18203/2319-2003.ijbcp20210185
[14] Darenskaya M, Kolesnikov S, Semenova N. Kolesnikova L. Diabetic nephropathy: significance of determining oxidative stress and opportunities for antioxidant therapies. International Journal of Molecular Sciences. 2023; 24(15): 12378.
doi:10.3390/ijms241512378
[15] Pavuluri H, Bakhtiary Z, Panner Selvam MK, Hellstrom WJ. Oxidative stress-associated male infertility: current diagnostic and therapeutic approaches. Medicina. 2024; 60(6): 1008.
doi:10.3390/medicina60061008
[16] Chen L, Mori Y, Nishii S, Sakamoto M, Ohara M, Yamagishi SI, et al. Impact of oxidative stress on sperm quality in oligozoospermia and normozoospermia males without obvious causes of infertility. Journal of Clinical Medicine. 2024; 13(23):7158.
doi:10.3390/jcm13237158
[17] Parastesh M, Yousefvand Z, Moghadasi S. Comparison of the effect of moderate-intensity interval training (MICT) and high-intensity interval training (HIIT) on testicular structure, serum level of malondialdehyde and total antioxidant capacity of male diabetic rats. Daneshvar Medicine. 2020; 27(2): 27-40. [In Persian].
doi:10.22070/27.141.27
[18] El-Saadony, MT, Yang T, Korma SA, Sitohy M, El-Mageed A, Taia A, et al. Impacts of turmeric and its principal bioactive curcumin on human health: Pharmaceutical, medicinal, and food applications: A comprehensive review. Frontiers in Nutrition. 2023; 9: 1040259.
doi:10.3389/fnut.2022.1040259
[19] Heydari H, Ghiasi R, Hamidian G, Ghaderpour S, Keyhanmanesh R. Voluntary exercise improves sperm parameters in high fat diet receiving rats through alteration in testicular oxidative stress, mir-34a/SIRT1/p53 and apoptosis. Hormone molecular biology and clinical investigation. 2021; 42(3): 253-263.
doi:10.1515/hmbci-2020-0085
[20] Aly MA, El-Sayed El-Shamarka M, Soliman TN, Elgabry MA. Protective effect of nanoencapsulated curcumin against boldenone-induced testicular toxicity and oxidative stress in male albino rats. Egyptian Pharmaceutical Journal. 2021; 20(1): 72-81.
doi:10.4103/epj.epj_53_20
[21] Fakhri S, Shakeryan S, Fakhri F, Alizadeh, AA. The effect of 6 weeks of high-intensity interval training (HIIT) with using Nano-curcumin supplement on total antioxidant capacity and Malondialdehyde level in overweight girls. Journal of Birjand University Medical Sciences. 2019; 26(4): 333-342.
doi:10.32592/JBirjandUnivMedSci.2019.26.4.105
[22] Sadraei MR, Tavalaee M, Forouzanfar M, Nasr‐Esfahani MH. Effect of curcumin, and nano‐curcumin on sperm function in varicocele rat model. Andrologia. 2022; 54(1): e14282.
doi:10.1111/and.14282
[23] Fakhri S, Shakeryan S, Alizadeh A, Shahryari A. Effect of 6 weeks of high intensity interval training with nano curcumin supplement on antioxidant defense and lipid peroxidation in overweight girls-clinical trial. Iranian journal of diabetes and obesity. 2020; 11(3): 173-180.
doi:10.18502/ijdo.v11i3.2606
[24] Noorbakhsh S, Roshan VD. Influence of 8 weeks of Tabata high-intensity interval training and nanocurcumin supplementation on inflammation and cardiorespiratory health among overweight elderly women. Preventive Nutrition and Food Science. 2023; 28(3): 224.
doi:10.3746/pnf.2023.28.3.224
[25] Ha CH, So WY. Effects of combined exercise training on body composition and metabolic syndrome factors. Iranian Journal of Public Health. 2012; 41(8): 20-26.
[26] Corona G, Giagulli VA, Maseroli E, Vignozzi L, Aversa A, Zitzmann M, et al. Testosterone supplementation and body composition: results from a meta-analysis of observational studies. Journal of Endocrinological Investigation. 2016; 39: 967-981.
doi:10.1007/s40618-016-0480-2
[27] Agarwal A, Gupta S, Sekhon L, Shah R. Redox considerations in female reproductive function and assisted reproduction: from molecular mechanisms to health implications. Antioxidants & redox signaling. 2008; 10(8): 1375-1404.
doi:10.1089/ars.2007.1964
[28] Saberi-Karimian M, Parizadeh SMR, Ghayour-Mobarhan M, Salahshooh MM, Dizaji BF, Safarian H, Evaluation of the effects of curcumin in patients with metabolic syndrome. Comparative Clinical Pathology. 2018: 27, 555-563.
doi:10.1007/s00580-017-2624-y
[29] Carvalho, M.G., Silva, K.M., Aristizabal, V.H., Ortiz, P.E., Paranzini, C.S., Melchert, A., Amaro JL, Souza FF. Effects of obesity and diabetes on sperm cell proteomics in rats. Journal of Proteome Research. 2021; 20(5): 2628-2642.
doi:10.1021/acs.jproteome.0c01044
[30] Tuong DTC, Moniruzzaman M, Smirnova, E, Chin S, Sureshbabu A, Karthikeyan A, et al. Curcumin as a potential antioxidant in stress regulation of Terrestrial, Avian, and aquatic animals: a review. Antioxidants. 2023; 12(9):1700.
doi:10.3390/antiox12091700
[31] Plizga J, Jaworski A, Grajnert F, Głuszczyk A, Surma A, Cecot J, et al. High-intensity interval training - health benefits and risks - literature review. Quality in Sports. 2024; 18: 53359.
doi:10.12775/QS.2024.18.53359
[32] Xu Z, Qin Y, Lv B, Tian Z, Zhang B. Effects of moderate-intensity continuous training and high-intensity interval training on testicular oxidative stress, apoptosis and m6A Methylation in obese male mice. Antioxidants. 2022; 11(10): 1874.
doi:10.3390/antiox11101874
[33] Santonastaso M, Mottola F, Iovine C, Colacurci N, Rocco L. Protective effects of curcumin on the outcome of cryopreservation in human sperm. Reproductive Sciences. 2021; 28: 2895-2905.
doi:10.1007/s43032-021-00572-9
[34] Laleethambika N, Anila V, Manojkumar C, Muruganandam I, Giridharan B, Ravimanickam T, et al. Diabetes and sperm DNA damage: Efficacy of antioxidants. Comprehensive Clinical Medicine. 2019; 1: 49-59.
doi:10.1007/s42399-018-0012-9
[35] Dessouki SM, Abu Hamed S, Fayed AAEK, El-Assal S, Saeed AM, Amin AA. Effect of exogenous Curcumin on post-thaw sperm parameters, antioxidant status, the expression of antioxidants and antifreeze-related genes in rabbits. Egyptian Journal of Veterinary Sciences. 2024;1-14. [In Press].
doi:10.21608/ejvs.2024.328602.2428
[36] Shin JY, Park EK, Park BJ, Shim JY, Lee HR. High-normal glucose levels in non-diabetic and pre-diabetic men are associated with decreased testosterone levels. Korean Journal of Family Medicine. 2012; 33(3): 152-156.
doi:10.4082/kjfm.2012.33.3.152
[37] Hermsdorff HHM, Puchau B, Volp ACP, Barbosa KB, Bressan J, Zulet MÁ, et al. Dietary total antioxidant capacity is inversely related to central adiposity as well as to metabolic and oxidative stress markers in healthy young adults. Nutrition & metabolism. 2011; 8: 59.
doi:10.1186/1743-7075-8-59
[38] Nobari H, Saedmocheshi S, Johnson K, Prieto-González P, Valdés-Badilla P. Interaction effect of curcumin and various exercise training strategies on adipokines and adipocytokines in the human body: An overview. Clinical Nutrition Open Science. 2024; 55: 234-248.
doi:10.1016/j.nutos.2024.04.004
[39] Potter NJ, Tomkinson GR, Dufner TJ, Walch TJ, Roemmich JN, Wilson PB, et al. Effects of exercise training on resting testosterone concentrations in insufficiently active men: a systematic review and meta-analysis. The Journal of Strength & Conditioning Research. 2021; 35(12): 3521-3528.
doi:10.1519/JSC.0000000000004146
[40] Skovsø, S. Modeling type 2 diabetes in rats using high fat diet and streptozotocin Journal of Diabetes Investigation. 2014; 5(4): 349-358. doi:10.1111/jdi.12235