Design, fabrication and catalytic performance of zeolite CaY functionalized with 4-methylpyridinium chloride ionic liquid as a new multifunctional nanocatalyst in the three-component synthesis of isoxazolones
Subject Areas : شیمی آلیMehdi Kalhor 1 * , Zeinab Hozhabri 2 , Zahra Seyedzade 3
1 - Department of Chemistry, Payame Noor University, Tehran, 19395-4697, Iran.
2 - Department of Chemistry, Faculty of Basic Sciences, Payam Noor University, Tehran, Iran
3 - Department of Chemistry, Faculty of Basic Sciences, Payam Noor University, Tehran, Iran
Keywords: Ionic liquid, Multi-functional nanocatalyst, three-component synthesis, isoxazolone, Zeolite CaY, 4-methylpyridinium chloride,
Abstract :
In this study, first zeolite CaY was obtained through the reaction of zeolite NaY with CaCl2. Then it was functionalized by reaction with an organic linker, 3-chloropropyl triethoxysilane, followed by reaction with 4-methylpyridine (4-MePyr IL@CaY). The structure and morphology of this new multi-functional nanoporous material were investigated and identified using Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDS), thermogravimetric analysis (TGA-DTA) and Brunaeur-Emmet-Teller (BET) instrumental analyses. The catalytic activity of this multifactorial nanosystem in the easy synthesis of 4-(arylidene)-3-methyl-5-(4H)-isoxazolones was investigated through the three-component condensation reaction of various benzaldehydes, hydroxylamine hydrochloride and ethyl acetate under green conditions. One of the obvious advantages of this nanocatalyst is the presence of Lewis acid (Ca2+) sites and ionic liquid 4-methylpyridinium chloride on a nanoporous solid substrate, which can be very important and instructive in multi-component syntheses. Simplicity of process, catalyst recyclability and easy product separation, high yield and mild conditions are other advantages of this procedure.
[1] Bacakova, L.; Vandrovcova, M.; Kopova, I.; Jirka, I.; Biomater. Sci. 6, 974-989, 2018.
[2] Jagadeesan, D.; Appl. Catal. A, 511, 59-77, 2016.
[3] Aghabozorg, H.R.; Amir-Moghadam, H.; J. Appl. Res. Chem. 6, 73-80, 2013.
[4] Moshoeshoe, M.; Nadiye-Tabbiruka, M.S.; Obuseng, V.; Am. J. Mater. Sci. 7, 196-221, 2017.
[5] Samadi, S.; Karkhaneh, A.; Moghaddamborna, M.; Zakaria, S.A.; J. Appl. Res. Chem. 13, 61-71, 2019.
[6] Khodadadi, B.; Aghamiri, F.; Bordbar, M.; J. Appl. Res. Chem. 14, 37-47, 2020.
[7] Ehsani, A.; Moftakhar, M.K.; Kalhor, M.; J. Energy Storage 55, 105489, 2022.
[8] Liang, J.; Liang, Z.; Zou, R.; Zhao, Y.; Adv. Mater. 29, 1701139, 2017.
[9] Mofarahi, M.; Gholipour, F.; Micropor. Mesopor. Mat. 200, 1-10, 2014.
[10] Nazari, M.; Yaripour, F.; J. Appl. Res. Chem. 15, 73-89, 2021.
[11] Karami, H.; Kazemini, M.; Sultanali, S.; Rashidzade, M.; J. Appl. Res. Chem. 15, 106-117, 2022.
[12] Kalhor, M.; Banibairami, S.; Mirshokraie, S.A.; Green Chem. Lett. Rev. 11, 334-344, 2018.
[13] Horta-Fraijo, P.; Smolentseva, E.; Simakov, A.; José-Yacaman, M.; Acosta, B.; Micropor. Mesopor. Mat. 312, 110707, 2018.
[14] Kalhor, M.; Zarnegar, Z.; Seyedzade, Z.; Banibairami, S.; Cur. Org. Syn. 17, 117-130, 2020.
[15] Zendehdel, M.; Bodaghifard, M.A.; Behyara, H.; Mortezaei, Z.; Micropor. Mesopor. Mat. 266, 83-89, 2018.
[16] Jiang, W.; Dong, L.; Li, H.; Jia, H.; Zhu, L.; Zhu, W.; Li, H.; J. Mol. Liq. 274, 293-299, 2019.
[17] Khodadadi, S.; Konoz, E.; Ezabadi, A.; Niazi, A.; J. Appl. Res. Chem. 15, 24-33, 2021.
[18] Singhal, S.; Agarwal, S.; Singh, M.; Rana, S.; Arora, S.; Singhal, N.; Ionic liquids: J. Mol. Liq. 285, 299-313, 2019.
[19] Hosseini, M.; Jalili Jahani, N.; J. Appl. Res. Chem. 13, 89-103, 2019.
[20] Fehrmann, R.; Riisager, Haumann, M.; “Supported Ionic Liquids: Fundamentals and Applications”, Wiley‐VCH Verlag GmbH, USA, 2014.
[21] Han, J.; Guo, H.; Wang, X.G.; Pang, M.L.; Meng, J.B.; Chin. J. Chem. 25, 129-131, 2007.
[22] Aret, E.; Meekes, H.; Vlieg, E.; Deroover, G.; Dyes Pigm. 72, 339-344, 2007.
[23] Biju, S.; Reddy, M.L.P.; Freire, R.O.; Inorg. Chem. Commun. 10, 393-396, 2007.
[24] Zhang, X.H.; Zhan, Y.H.; Chen, D.; Wang, F.; Wang, L.Y.; Dyes Pigm. 93, 1408-1415, 2012.
[25] Clemens Lamberth, J.; J. Heterocycl. Chem. 55, 2035-2045, 2018.
[26] Santos, M.M.; Faria, N.; Iley, J.; Bioorg. Med. Chem. Lett. 20, 193-195, 2010.
[27] Karabasanagouda, T.; Adhikari, A.V.; Girisha, M.; Indian J. Chem. 48, 430-437, 2009.
[28] Kamal, A.; Bharathi, E.V.; Reddy, J.S.; Eur. J. Med. Chem. 46, 691-703, 2011.
[29] Kan, H.; Adachi, I.; Kido, R.; Hirose, K.; J. Med. Chem. 10, 411-418, 1967.
[30] Diana, P.; Carbone, A.; Barraja, P.; Kelter, G.; Fiebig, H.H.; Cirrincione, G.; Bioorg. Med. Chem. 18, 4524-4529, 2010.
[31] Ishioka, T.; Tanatani, A.; Nagasawa, K.; Hashimoto, Y.; Bioorg. Med. Chem. Lett. 13, 2655-2658, 2003.
[32] Kafle, B.; Aher, N.G.; Khadka, D.; Park, H.; Cho, H.; Chem. Asian J. 6, 2073-2079, 2011.
[33] Panathur, N.; Gokhale, N.; Dalimba, U.; Koushik, P.V.; Yogeeswari, P.; Sriram, D.; Bioorg. Med. Chem. Lett. 25, 2768-2772, 2015.
[34] Villemin, D.; Martin, B.; Garrigues, B.; Synth. Commun. 23, 2251-2257, 1993.
[35] Nakamura, I.; Okamoto, M.; Terada, M.; Org. Lett. 12, 2453-2455, 2010.
[36] Donleavy, J.J.; Gilbert, E.E.; J. Am. Chem. Soc. 59, 1072-1076, 1937.
[37] Lowe, D.B.; Magnuson, S.; Ning, Q.; Campbell, A.M.; Cook, J.; Hong, Z.; Wang, M.; Bioorg. Med. Chem. Lett. 14, 3155-3159, 2004.
[38] Safari, J.; Ahmadzadeh, M.; Zarnegar, Z.; Catal. Commun. 86, 91-95, 2016.
[39] Saikh, F.; Das, J.; Ghosh, S.; Tetrahedron Lett. 54, 4679-4682, 2013.
[40] Fozooni, S.; Hosseinzadeh, N.G.; Hamidian, H.; Akhgar, M.R.; J. Braz. Chem. Soc. 24, 1649-1655, 2013.
[41] Kalhor, M.; Samiei, S.; Mirshokraie, S.A.; Silicon 13, 201-210, 2021.
[42] Kalhor, M.; Sajjadi, S.M.; Dadras, A.; RSC Adv. 10, 27439-27446, 2020.
[43] Kalhor, M.; Orouji, Z.; Khalaj, M.; Micropor. Mesopor. Mat. 329, 111498, 2021.
[44] Perez-Pariente, J.; Martens, J.A.; Jacobs, P.A.; Appl. Catal. 31, 35-64, 1987.
[45] Yang, C.; Xu, Q.; J. Chem. Soc., Faraday Trans. 93, 1675-1680, 1997.
[46] Endang, P.S.; Rahadian, A.R.; Ulva, T.I.M.; Alvin, R.W.; Rendy, M.I.; Nurul, W.; Mater. Sci. Forum. 964, 199-208, 2019.
[47] Kiyani, H.; Ghorbani, F.; J. Saudi Chem. Soc. 21, S112-S119, 2017.
[48] Rikani, A.; Setamdideh, D.; Orient. J. Chem. 32, 1433-1437, 2016.
[49] Ablajan, K.; Xiamuxi, H.; Chin. Chem. Lett. 22:151-154, 2011.
_||_[1] Bacakova, L.; Vandrovcova, M.; Kopova, I.; Jirka, I.; Biomater. Sci. 6, 974-989, 2018.
[2] Jagadeesan, D.; Appl. Catal. A, 511, 59-77, 2016.
[3] Aghabozorg, H.R.; Amir-Moghadam, H.; J. Appl. Res. Chem. 6, 73-80, 2013.
[4] Moshoeshoe, M.; Nadiye-Tabbiruka, M.S.; Obuseng, V.; Am. J. Mater. Sci. 7, 196-221, 2017.
[5] Samadi, S.; Karkhaneh, A.; Moghaddamborna, M.; Zakaria, S.A.; J. Appl. Res. Chem. 13, 61-71, 2019.
[6] Khodadadi, B.; Aghamiri, F.; Bordbar, M.; J. Appl. Res. Chem. 14, 37-47, 2020.
[7] Ehsani, A.; Moftakhar, M.K.; Kalhor, M.; J. Energy Storage 55, 105489, 2022.
[8] Liang, J.; Liang, Z.; Zou, R.; Zhao, Y.; Adv. Mater. 29, 1701139, 2017.
[9] Mofarahi, M.; Gholipour, F.; Micropor. Mesopor. Mat. 200, 1-10, 2014.
[10] Nazari, M.; Yaripour, F.; J. Appl. Res. Chem. 15, 73-89, 2021.
[11] Karami, H.; Kazemini, M.; Sultanali, S.; Rashidzade, M.; J. Appl. Res. Chem. 15, 106-117, 2022.
[12] Kalhor, M.; Banibairami, S.; Mirshokraie, S.A.; Green Chem. Lett. Rev. 11, 334-344, 2018.
[13] Horta-Fraijo, P.; Smolentseva, E.; Simakov, A.; José-Yacaman, M.; Acosta, B.; Micropor. Mesopor. Mat. 312, 110707, 2018.
[14] Kalhor, M.; Zarnegar, Z.; Seyedzade, Z.; Banibairami, S.; Cur. Org. Syn. 17, 117-130, 2020.
[15] Zendehdel, M.; Bodaghifard, M.A.; Behyara, H.; Mortezaei, Z.; Micropor. Mesopor. Mat. 266, 83-89, 2018.
[16] Jiang, W.; Dong, L.; Li, H.; Jia, H.; Zhu, L.; Zhu, W.; Li, H.; J. Mol. Liq. 274, 293-299, 2019.
[17] Khodadadi, S.; Konoz, E.; Ezabadi, A.; Niazi, A.; J. Appl. Res. Chem. 15, 24-33, 2021.
[18] Singhal, S.; Agarwal, S.; Singh, M.; Rana, S.; Arora, S.; Singhal, N.; Ionic liquids: J. Mol. Liq. 285, 299-313, 2019.
[19] Hosseini, M.; Jalili Jahani, N.; J. Appl. Res. Chem. 13, 89-103, 2019.
[20] Fehrmann, R.; Riisager, Haumann, M.; “Supported Ionic Liquids: Fundamentals and Applications”, Wiley‐VCH Verlag GmbH, USA, 2014.
[21] Han, J.; Guo, H.; Wang, X.G.; Pang, M.L.; Meng, J.B.; Chin. J. Chem. 25, 129-131, 2007.
[22] Aret, E.; Meekes, H.; Vlieg, E.; Deroover, G.; Dyes Pigm. 72, 339-344, 2007.
[23] Biju, S.; Reddy, M.L.P.; Freire, R.O.; Inorg. Chem. Commun. 10, 393-396, 2007.
[24] Zhang, X.H.; Zhan, Y.H.; Chen, D.; Wang, F.; Wang, L.Y.; Dyes Pigm. 93, 1408-1415, 2012.
[25] Clemens Lamberth, J.; J. Heterocycl. Chem. 55, 2035-2045, 2018.
[26] Santos, M.M.; Faria, N.; Iley, J.; Bioorg. Med. Chem. Lett. 20, 193-195, 2010.
[27] Karabasanagouda, T.; Adhikari, A.V.; Girisha, M.; Indian J. Chem. 48, 430-437, 2009.
[28] Kamal, A.; Bharathi, E.V.; Reddy, J.S.; Eur. J. Med. Chem. 46, 691-703, 2011.
[29] Kan, H.; Adachi, I.; Kido, R.; Hirose, K.; J. Med. Chem. 10, 411-418, 1967.
[30] Diana, P.; Carbone, A.; Barraja, P.; Kelter, G.; Fiebig, H.H.; Cirrincione, G.; Bioorg. Med. Chem. 18, 4524-4529, 2010.
[31] Ishioka, T.; Tanatani, A.; Nagasawa, K.; Hashimoto, Y.; Bioorg. Med. Chem. Lett. 13, 2655-2658, 2003.
[32] Kafle, B.; Aher, N.G.; Khadka, D.; Park, H.; Cho, H.; Chem. Asian J. 6, 2073-2079, 2011.
[33] Panathur, N.; Gokhale, N.; Dalimba, U.; Koushik, P.V.; Yogeeswari, P.; Sriram, D.; Bioorg. Med. Chem. Lett. 25, 2768-2772, 2015.
[34] Villemin, D.; Martin, B.; Garrigues, B.; Synth. Commun. 23, 2251-2257, 1993.
[35] Nakamura, I.; Okamoto, M.; Terada, M.; Org. Lett. 12, 2453-2455, 2010.
[36] Donleavy, J.J.; Gilbert, E.E.; J. Am. Chem. Soc. 59, 1072-1076, 1937.
[37] Lowe, D.B.; Magnuson, S.; Ning, Q.; Campbell, A.M.; Cook, J.; Hong, Z.; Wang, M.; Bioorg. Med. Chem. Lett. 14, 3155-3159, 2004.
[38] Safari, J.; Ahmadzadeh, M.; Zarnegar, Z.; Catal. Commun. 86, 91-95, 2016.
[39] Saikh, F.; Das, J.; Ghosh, S.; Tetrahedron Lett. 54, 4679-4682, 2013.
[40] Fozooni, S.; Hosseinzadeh, N.G.; Hamidian, H.; Akhgar, M.R.; J. Braz. Chem. Soc. 24, 1649-1655, 2013.
[41] Kalhor, M.; Samiei, S.; Mirshokraie, S.A.; Silicon 13, 201-210, 2021.
[42] Kalhor, M.; Sajjadi, S.M.; Dadras, A.; RSC Adv. 10, 27439-27446, 2020.
[43] Kalhor, M.; Orouji, Z.; Khalaj, M.; Micropor. Mesopor. Mat. 329, 111498, 2021.
[44] Perez-Pariente, J.; Martens, J.A.; Jacobs, P.A.; Appl. Catal. 31, 35-64, 1987.
[45] Yang, C.; Xu, Q.; J. Chem. Soc., Faraday Trans. 93, 1675-1680, 1997.
[46] Endang, P.S.; Rahadian, A.R.; Ulva, T.I.M.; Alvin, R.W.; Rendy, M.I.; Nurul, W.; Mater. Sci. Forum. 964, 199-208, 2019.
[47] Kiyani, H.; Ghorbani, F.; J. Saudi Chem. Soc. 21, S112-S119, 2017.
[48] Rikani, A.; Setamdideh, D.; Orient. J. Chem. 32, 1433-1437, 2016.
[49] Ablajan, K.; Xiamuxi, H.; Chin. Chem. Lett. 22:151-154, 2011.