Synthesis of tin (II) oxide nanoparticles using oregano plant extract and its application in fatty alcohols esterification
Subject Areas : شیمی آلیsara mohseni tavana 1 , kosar amirsadeqi 2 , Roya Kiani-Anbouhi 3 , Elaheh Bohloulbandi 4 , mohamad hadi ghasemi 5 *
1 - Al-Zahra University, Tehran
2 - Amirkabir University of Technology, Tehran
3 - Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin
4 - ssistant Professor of Applied Chemistry Research Group, ACECR-Tehran Organization, Tehran, Iran
5 - استادیار گروه پژوهشی شیمی کاربردی، سازمان جهاد دانشگاهی تهران، تهران.
Keywords: Oregano, Esterification, Tin (II) oxide Nanoparticle, Fatty Alcohol, Insect Sex Pheromone,
Abstract :
The aim of this research is to use oregano plant extract as an economical and safe green alternative for the synthesis of tin (II) oxide nanoparticles and its application in the esterification of fatty alcohols. Thus, for the synthesis of tin (II) oxide nanoparticles, oregano plant extract and tin (II) chloride were used. The obtained tin (II) oxide nanoparticles were used as nanocatalysts in the esterification of fatty alcohols. Using equivalent amounts of acetic anhydride: lauryl alcohol (1:1) in solvent-free conditions, at 80°C for 60 minutes, lauryl acetate ester was synthesized (Ra=83%). By using cetyl alcohol and increasing temperature to 90°C for 120 minutes, cetyl acetate ester was synthesized (Ra=81%). Lauryl acetate and cetyl acetate are in the formulation of many insect sex pheromones and can be used as attractants in traps for monitoring and trapping agricultural pests. The results of this research showed that anhydrous tin (II) oxide synthesized by the green method was suitable for catalyzing the esterification reaction of fatty alcohols. High efficiency, no use of expensive and toxic amine solvents, simplicity of the catalyst synthesis and recycling, simplicity of the esterification method using the catalyst, and reuse of the catalyst in consecutive reactions (3 consecutive reactions with 88, 85 and 81% efficiency, using acetic anhydride: lauryl alcohol 1.5:1) is one of the advantages of the method.
[1] Jadoun, S.; Arif, R.; Jangid, N.K.; Meena, R.K.; Environ. Chem. Lett. 19(1), 355-374, 2021.
[2] El Shafey; A.M.; Green Process. Synth. 9(1), 304-339, 2021.
[3] Mittal, A.K.; Chisti, Y.; Banerjee, U.C.; Biotechnol. Adv. 31(2), 346-356, 2013.
[4] Soni, V.; Raizada, P.; Singh, P.; Cuong, H.N.; Rangabhashiyam, S.; Saini, A.; Saini, R.V.; Van Le, Q.; Nadda, A.K.; Le, T.T.; Nguyen, V.H.; Environ. Res. 202, 111622, 2021.
[5] Virkutyte, J.; Varma, R.S.; Chem. Sci. 2(5), 837-846, 2011.
[6] Borodina, I.; Holkenbrink, C.; Dam, M.I.; Löfstedt, C.; DTU DTU Library 2018.
[7] Zhang, W.; Lee, J.H.; Younes, S.H.; Tonin, F.; Hagedoorn, P.L.; Pichler, H.; Baeg, Y.; Park, J.B.; Kourist, R.; Hollmann, F.; Nat. Commun. 11(1), 1-8, 2020.
[8] Sert, E.; Buluklu, A.D.; Karakuş, S.; Atalay, F.S.; Chem. Eng. Process. 73, 23-28, 2013.
[9] Kolah, A.K.; Asthana, N.S.; Vu, D.T.; Lira, C.T.; Miller, D.J.; Ind. Eng. Chem. Res. 47(15), 5313-5317, 2008.
[10] Rizvi, S.A.H.; George, J.; Reddy, G.V.; Zeng, X.; Guerrero, A.; Insects 12(484), 1-26, 2021.
[11] Mutlu, V.N.; Yilmaz, S.; Appl. Catal. 522, 194-200. 2016.
[12] Bombos, D.; Bombos, M.; Bolocan, I.; Vasilievici, G.; Zaharia, E.; Rev. Chim. 61, 784-787, 2010.
[13] Gao, S.; Ren, F.Y.; Xie, W.H.; He, L.N.; Li, H.R.; J. Am. Oil Chem. Soc. 99(1), 91-99, 2022.
[14] Singh, D.; Patidar, P.; Ganesh, A.; Mahajani, S.; Ind. Eng. Chem. Res. 52(42), 14776-14786, 2013.
[15] Tan, J.; Lu, T.; Zhang, J.; Xie, B.; Chen, M.; Zhu, X.J.; Taiwan Inst. Chem. Eng. 86, 18-24, 2018.
[16] San Kong, P.; Aroua, M.K.; Daud, W.M.A.W.; Rev. Chem. Eng. 31(5), 437-451, 2015.
[17] Oprescu, E.E.; Bombos, D.; Dragomir, R.E.; Stepan, E.; Bolocan, I.; Rev. Chim, 66(6), 864-867, 2015.
[18] Bhande, S.S.; Gaikwad, S.L.; Pawar, B.G.; Shaikh, A.; Kolekar, S.S.; Joo, O.S.; Han, S.H.; J. Nanoeng. Nanomanuf 3(3), 237-242, 2013.
_||_[1] Jadoun, S.; Arif, R.; Jangid, N.K.; Meena, R.K.; Environ. Chem. Lett. 19(1), 355-374, 2021.
[2] El Shafey; A.M.; Green Process. Synth. 9(1), 304-339, 2021.
[3] Mittal, A.K.; Chisti, Y.; Banerjee, U.C.; Biotechnol. Adv. 31(2), 346-356, 2013.
[4] Soni, V.; Raizada, P.; Singh, P.; Cuong, H.N.; Rangabhashiyam, S.; Saini, A.; Saini, R.V.; Van Le, Q.; Nadda, A.K.; Le, T.T.; Nguyen, V.H.; Environ. Res. 202, 111622, 2021.
[5] Virkutyte, J.; Varma, R.S.; Chem. Sci. 2(5), 837-846, 2011.
[6] Borodina, I.; Holkenbrink, C.; Dam, M.I.; Löfstedt, C.; DTU DTU Library 2018.
[7] Zhang, W.; Lee, J.H.; Younes, S.H.; Tonin, F.; Hagedoorn, P.L.; Pichler, H.; Baeg, Y.; Park, J.B.; Kourist, R.; Hollmann, F.; Nat. Commun. 11(1), 1-8, 2020.
[8] Sert, E.; Buluklu, A.D.; Karakuş, S.; Atalay, F.S.; Chem. Eng. Process. 73, 23-28, 2013.
[9] Kolah, A.K.; Asthana, N.S.; Vu, D.T.; Lira, C.T.; Miller, D.J.; Ind. Eng. Chem. Res. 47(15), 5313-5317, 2008.
[10] Rizvi, S.A.H.; George, J.; Reddy, G.V.; Zeng, X.; Guerrero, A.; Insects 12(484), 1-26, 2021.
[11] Mutlu, V.N.; Yilmaz, S.; Appl. Catal. 522, 194-200. 2016.
[12] Bombos, D.; Bombos, M.; Bolocan, I.; Vasilievici, G.; Zaharia, E.; Rev. Chim. 61, 784-787, 2010.
[13] Gao, S.; Ren, F.Y.; Xie, W.H.; He, L.N.; Li, H.R.; J. Am. Oil Chem. Soc. 99(1), 91-99, 2022.
[14] Singh, D.; Patidar, P.; Ganesh, A.; Mahajani, S.; Ind. Eng. Chem. Res. 52(42), 14776-14786, 2013.
[15] Tan, J.; Lu, T.; Zhang, J.; Xie, B.; Chen, M.; Zhu, X.J.; Taiwan Inst. Chem. Eng. 86, 18-24, 2018.
[16] San Kong, P.; Aroua, M.K.; Daud, W.M.A.W.; Rev. Chem. Eng. 31(5), 437-451, 2015.
[17] Oprescu, E.E.; Bombos, D.; Dragomir, R.E.; Stepan, E.; Bolocan, I.; Rev. Chim, 66(6), 864-867, 2015.
[18] Bhande, S.S.; Gaikwad, S.L.; Pawar, B.G.; Shaikh, A.; Kolekar, S.S.; Joo, O.S.; Han, S.H.; J. Nanoeng. Nanomanuf 3(3), 237-242, 2013.