Biosynthesis of iron oxide nanoparticles using aqueous extract of Opuntia Cactus and its application in the synthesis of pyrimidine derivatives
Subject Areas : شیمی آلیMaryam Jahandar Lashaki 1 , Rahimeh Hajinasiri 2 * , Zinatossadat Hossaini 3 , Navabeh Nami 4
1 - Ph.D student of Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran.
2 - Associate Prof. of Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran.
3 - Associate Prof. of Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran.
4 - Associate Prof. of Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran.
Keywords: Iron oxide nanoparticles, biosynthesis, Magnetite, pyrimidine, Opuntia,
Abstract :
In recent years, the green method, especially using plant extracts, has attracted much attention for synthesis of metal nanoparticles. In this study, biosynthesis of magnetic iron oxide nanoparticles (Fe3O4-NPs) was performed using an aqueous extract of Opuntia Cactus. Plant extract had a reducing and stabilizing role in the nanoparticle synthesis process. The structure and morphology of synthesized Fe3O4-NPs were confirmed with X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared Fourier transform spectroscopy (FTIR), diffuse reflectance spectroscopy (DRS), and vibrating sample magnetometry (VSM). The obtained results showed that the proposed method presented a synthesis of magnetic Fe3O4-NPs with a spherical shape and average size of 9.7 nm. Also, pyrimidine derivatives were synthesized by a one-pot three-component reaction between aromatic aldehydes, acetoacetanilide and urea or thiourea in the presence of prepared magnetic Fe3O4-NPs as a catalyst in ethanol at room temperature. Short reaction time, easy purification steps, and high efficiency are the advantages of this method.
[1] Sun, S.H.; Murray, C.B.; Weller, D.; Folks, L.; Moser, A.; Science 287, 1989–1992, 2000.
[2] Jeyadevan, B.; Chinnasamy, C.N.; Shinoda, K.; Tohji, K.; Oka, H.; J. Appl. Phys. 93, 8450–8452, 2003.
[3] Miller, M.M.; Prinz, G.A.; Cheng, S.F.; Bounnak, S.; Appl. Phys. Lett. 81, 2211–2213, 2002.
[4] Zhang, J.L.; Wang, Y.; Ji, H.; Wei, Y.G.; Wu, N.Z.; Zuo, B.J.; Wang, Q.L.; J. Catal. 229, 114–118, 2005.
[5] Ettadili, F.E.; Aghris, S.; Laghri, F.; Farahi, A.; Saqrane, S.; Bakasse, M.; Lahrich, S.; El Mhammedi, M.A.; J. Mol. Struct.1248, 131538, 2022.
[6] Baghi, J.; Bhattacharya S.K.; Transition Met.Chem. 32, 47-55, 2007.
[7] Abhilash, Revati, K.; Pandey, B.D.; Bull. Mater. Sci. 34, 191–198, 2011.
[8] Dehghan, Z.; Ranjbar, M.; Govahi, M.; Khakdan, F.; J. Drug Deliv. Sci. Technol. 67, 102941, 2022.
[9] Nezafat, Z.; Nasrollahzadeh, M.; J. Mol. Struct. 1228, 129731, 2021.
[10] Hajinasiri, R.; Norozi, B.; Ebrahimzadeh, H. Chem. Lett. 45, 1238-1240, 2016.
[11] Dadashi, H.; Hajinasiri, R.; Int. J. Nano Dimens. 11, 405-411, 2020.
[12] Usman, U.L.; Singh, N.B.; Allamd, B.K.; Banerjee, S.; Mater. Today 60, 1140-1149, 2022.
[13] Lukman, A.I.; Gong, B.; Marjo, C.E.; Roessner, U.; Harris, A.T.; J. Colloid Interface Sci. 353, 433–444, 2011.
[14] Nnadozie, E.C.; Ajibade, P.A.; Mater. Lett. 263, 127145, 2020.
[15] Salam, H.A.; Rajiv, P.; Kamaraj, M.; Jagadeeswaran, P.; Gunalan, S.; Sivaraj, R.; Plants: Int. J. Biol. Sci. 1, 85–90, 2012.
[16] Majure, L.C.; Puente, R.; Griffith, M.P.; Judd, W. S.; Soltis, P.S.; Soltis, D.E.; Am. J. Bot. 99, 847–864, 2012.
[17] Michael, J.P.; Nat. Prod. Rep. 22, 627– 646, 2005.
[18] Shaitanova, E.N.; Balabon, O.A.; Rybakova, A.N.; Khlebnicova, T.S.; Lakhvich, F.A.; Gerusa, I.I.; J. Fluor. Chem. 252, 109905, 2021.
[19] Bahramia, Gh.; Batooie, N.; Mousavi, S.R.; Miraghaee, Sh.; Hosseinzadeh, N.; Hoshyari, A.; Mousavian, S. M.; Sajadimajd, S.; Mohammadi, B.; Hatami, R.; Mahdavi, M.; Polycycl. Aromat. Compd. 43, 1566-1574, 2022.
[20] Nadal, E.; Olavarria, E.; Int. J. Clin. Pract. 58, 511 – 516, 2004.
[21] Kuma, K.; J. Heterocycl. Chem. 59, 205-238, 2022.
[22] Ghasemzadeh, M.A.; Mirhosseini-Eshkevari, B.; Heliyon 8,.e10022, 2022.
[23] Hill, M.D.; Movassaghi, M.; Chem. Eur. J. 14, 6836 – 6844, 2008.
[24] Rajendran, S.P.; Sengodan, K.; Journal of Nanoscience, 2017, 1-7, 2017.
[25] Cariou, C.C.A.; Clarkson, G.J.; Shipman, M.; J. Org. Chem. 73, 9762-9764, 2008.
[26] Armstrong, R.W.; Combs, A.P.; Tempest, P.A.; Brown, S.D.; Keating, T.A.; Acc. Chem. Res. 29, 123-131, 1996.
_||_[1] Sun, S.H.; Murray, C.B.; Weller, D.; Folks, L.; Moser, A.; Science 287, 1989–1992, 2000.
[2] Jeyadevan, B.; Chinnasamy, C.N.; Shinoda, K.; Tohji, K.; Oka, H.; J. Appl. Phys. 93, 8450–8452, 2003.
[3] Miller, M.M.; Prinz, G.A.; Cheng, S.F.; Bounnak, S.; Appl. Phys. Lett. 81, 2211–2213, 2002.
[4] Zhang, J.L.; Wang, Y.; Ji, H.; Wei, Y.G.; Wu, N.Z.; Zuo, B.J.; Wang, Q.L.; J. Catal. 229, 114–118, 2005.
[5] Ettadili, F.E.; Aghris, S.; Laghri, F.; Farahi, A.; Saqrane, S.; Bakasse, M.; Lahrich, S.; El Mhammedi, M.A.; J. Mol. Struct.1248, 131538, 2022.
[6] Baghi, J.; Bhattacharya S.K.; Transition Met.Chem. 32, 47-55, 2007.
[7] Abhilash, Revati, K.; Pandey, B.D.; Bull. Mater. Sci. 34, 191–198, 2011.
[8] Dehghan, Z.; Ranjbar, M.; Govahi, M.; Khakdan, F.; J. Drug Deliv. Sci. Technol. 67, 102941, 2022.
[9] Nezafat, Z.; Nasrollahzadeh, M.; J. Mol. Struct. 1228, 129731, 2021.
[10] Hajinasiri, R.; Norozi, B.; Ebrahimzadeh, H. Chem. Lett. 45, 1238-1240, 2016.
[11] Dadashi, H.; Hajinasiri, R.; Int. J. Nano Dimens. 11, 405-411, 2020.
[12] Usman, U.L.; Singh, N.B.; Allamd, B.K.; Banerjee, S.; Mater. Today 60, 1140-1149, 2022.
[13] Lukman, A.I.; Gong, B.; Marjo, C.E.; Roessner, U.; Harris, A.T.; J. Colloid Interface Sci. 353, 433–444, 2011.
[14] Nnadozie, E.C.; Ajibade, P.A.; Mater. Lett. 263, 127145, 2020.
[15] Salam, H.A.; Rajiv, P.; Kamaraj, M.; Jagadeeswaran, P.; Gunalan, S.; Sivaraj, R.; Plants: Int. J. Biol. Sci. 1, 85–90, 2012.
[16] Majure, L.C.; Puente, R.; Griffith, M.P.; Judd, W. S.; Soltis, P.S.; Soltis, D.E.; Am. J. Bot. 99, 847–864, 2012.
[17] Michael, J.P.; Nat. Prod. Rep. 22, 627– 646, 2005.
[18] Shaitanova, E.N.; Balabon, O.A.; Rybakova, A.N.; Khlebnicova, T.S.; Lakhvich, F.A.; Gerusa, I.I.; J. Fluor. Chem. 252, 109905, 2021.
[19] Bahramia, Gh.; Batooie, N.; Mousavi, S.R.; Miraghaee, Sh.; Hosseinzadeh, N.; Hoshyari, A.; Mousavian, S. M.; Sajadimajd, S.; Mohammadi, B.; Hatami, R.; Mahdavi, M.; Polycycl. Aromat. Compd. 43, 1566-1574, 2022.
[20] Nadal, E.; Olavarria, E.; Int. J. Clin. Pract. 58, 511 – 516, 2004.
[21] Kuma, K.; J. Heterocycl. Chem. 59, 205-238, 2022.
[22] Ghasemzadeh, M.A.; Mirhosseini-Eshkevari, B.; Heliyon 8,.e10022, 2022.
[23] Hill, M.D.; Movassaghi, M.; Chem. Eur. J. 14, 6836 – 6844, 2008.
[24] Rajendran, S.P.; Sengodan, K.; Journal of Nanoscience, 2017, 1-7, 2017.
[25] Cariou, C.C.A.; Clarkson, G.J.; Shipman, M.; J. Org. Chem. 73, 9762-9764, 2008.
[26] Armstrong, R.W.; Combs, A.P.; Tempest, P.A.; Brown, S.D.; Keating, T.A.; Acc. Chem. Res. 29, 123-131, 1996.