Improving the Performance of N719 Based Dye-Sensitized Solar Cell by Application of Polypyrrole/Polyaniline Conductive Polymers as a Counter Electrode
Subject Areas :Mahsa Mahdavinia 1 , Gholamreza Kiani 2 * , Ayub Karimzad Ghavidel 3
1 - Ph.D Student of Department of Organic Chemistry and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
2 - Associate Prof. of Department of Organic Chemistry and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
3 - Instructor of Department of Mechanical Engineering, Technical and Vocational University (TVU), Tehran, Iran.
Keywords: Polypyrrole, Polyaniline, Conductive polymer, Dye-Sensitized Solar Cell, Polymer Counter electrode,
Abstract :
The aim of this research is the fabrication of a titanium dioxide nanostructure-based solar cell sensitized with N719 dye, and improving its efficiency with the application of a core-shell structure of polypyrrole/polyaniline as a counter electrode. The solar cells with polymeric counter electrode were fabricated, in variable thicknesses by two spin coating and drop coating methods, and evaluated. In addition, the effect of nanowires and titanium dioxide nanoparticles concentration, present in photo-anode, was investigated on the performance of solar cell. The absorption amount of N719 dye was studied by spectrophotometer, and the maximum absorption was obtained at the wavelengths of 380 and 530 nm. The structural investigation of photo-anode and counter electrode by scanning electron microscope showed that the combination of nanoparticles and titanium dioxide nanowires with 1:9 ratio leads to a porous structure with a high surface-to-volume ratio that has a significant effect on the absorption of the dye and solar cell efficiency. The prepared solar cell by the drop coating method did not have appropriate performance. So, the focus of the research was directed towards the sample prepared by spin coating method. The solar cell sample with the counter electrode, containing polypyrrole/polyaniline, fabricated by spin coating method offers the open circuit voltage of 0.71 V, short circuit current of 2.58 mA, fill factor of 57.38, and efficiency of 1.05, which open circuit voltage and fill factor have been improved by 7.6 and 35 times compared to similar samples, respectively.
]1[ Mohiuddin, O.; Obaidullah, M.; Sabah, C.; Opt. Quantum Electron 50, 1-28, 2018.
]2[ Saranya, K.; Rameez, M.; Subramania, A.; Eur. Polym. J. 66, 207-227, 2015.
]3 [Bahramian, A.; Kerami, A.; Vashai, D.; J. Appl. Chem. 13, 73-84, 2019.
]4 [Sharma, S.; Siwach, B.; Ghoshal, S.; Mohan, D.; Renew. Sust. Energ. Rev. 70, 529-537, 2017.
]5 [Kumara, N.; Lim, A.; Lim, C. M.; Petra, M. I.; Ekanayake, P.; Renew. Sust. Energ. Rev. 78, 301-317, 2017.
]6 [Ahmad, M.S.; Pandey, A.K.; Abd Rahim, N.; Renew. Sust. Energ. Rev. 77, 89–108, 2017.
]7 [Gong, J.; Sumathy, K.; Qiao, Q.; Zhou, Z.; Renew. Sust. Energ. Rev. 68, 234-246, 2017.
]8 [Azimi, J.; Kiani, G.; Karimzad Ghavidel, A.; Mahdavinia, M.; Karafan Quarterly Scientific Journal 2022. (In press)
]9 [Tomar, N.; Dhaka, V.S.; Surolia, P.K.; Mater. Today: Proc. 43, 2975-2978, 2021.
]10 [ Pei, J.; Guo, F; .Zhang, J.; Zhou, B.; Bi, Y.; Li, R.; J. Clean. Prod. 288, 125-338, 2021.
]11 [Xia, J.; Chen, L.; Yanagida, S.; J. Mater. Chem. 21, 4644-4649, 2011.
]12 [Farooq, S.; Tahir, A.A.; Krewer, U.; Bilal, S.; Electrochim. Acta 320, 134544, 2019.
]13 [Li, Q.; Wu, J.; Tang, Q.; Lan, Z.; Li, P.; Lin, J.; Fan, L.; Electrochem. Commun. 10, 1299-1302, 2008.
]14 [Ghafoor, U.; Aqeel, A.B.; Zaman, U.K.U.; Zahid, T.; Noman, M.; Ahmad, M.S.; Energies 14, 3786, 2021.
]15 [Tas, R.; Can, M.; Sonmezoglu, S.; IEEE J. Photovolt. 7, 792-801, 2017.
]16 [Li, Q.; Wu, J.; Tang, Q.; Lan, Z.; Li, P.; Lin, J.; Fan, L.; Electrochem. commun. 10, 1299-1302, 2008.
]17 [Pan, L.; Qiu, H.; Dou, C.; Li, Y.; Pu, L.; Xu, J.; Shi, Y.; Int. J. Mol. Sci. 11, 2636-2657, 2010.
]18 [Rahman, M.S.; Hammed, W.A.; Yahya, R.B.; Mahmud, H.N.M.E.; J. Polym. Res. 23, 1-13, 2016.
]19 [Ghani, S.; Sharif, R.; Bashir, S.; Ashraf, A.; Shahzadi, S.; Zaidi, A.A.; Kamboh, A.H.; Mater Sci Semicond 31, 588-592, 2015.
]20 [Yue, G.; Zhang, X.A.; Wang, L.; Tan, F.; Wu, J.; Jiang, Q.; Lan, Z.; Electrochim. Acta .129, 229-236, 2014.
]21 [Xiao, Y.; Wu, J.; Yue, G.; Lin, J.; Huang, M.; Lan, Z.; Fan, L; Electrochim. Acta. 85, 432-437, 2012.
]22 [Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H.; Chem. Rev. 110, 6595-6663, 2010.
]23 [Upadhyay, J.; Kumar, A.; Gogoi, B.; Buragohain, A.K.; Mater. Sci. Eng. C. 54, 8-13, 2015.
]24 [Liang, B.; Qin, Z.; Zhao, J.; Zhang, Y.; Zhou, Z.; Lu, Y.; J. Mater. Chem. 2, 2129-2135, 2014.
]25 [Selvapriya, R.; Mayandi, J.; Ragavendran, V.; Sasirekha, V.; Vinodhini, J.; Pearce, J. M.; Ceram. Int. 45, 7268-7277, 2019.
]26 [Selvaraj, P.; Roy, A.; Ullah, H.; Sujatha Devi, P.; Tahir, A.A.; Mallick, T.K.; Sundaram, S.; Int. J. Energy Res. 43, 523-534, 2019.
]27 [Rodrigues, D.F.; Santos, F.; Abreu, C.M.; Coelho, J.F.; Serra, A.C.; Ivanou, D.; Mendes, A.; ACS Sustain. Chem. Eng. 9, 5981-5990, 2021.
]28 [Kalyanasundaram, K.; Grätzel, M.; Mater. Lett. 4, 88-90, 2009.
]29 [Hardani, H.; Ridwan Harahap, M.; Suhada, A.; Int. J. Thin Film Sci. Technol. 11, 6, 2022.
]30 [Chikate, B.V.; Sadawarte, Y.; Sewagram, B.; Int. J. Comput. Appl. 1, 0975-8887, 2015.
]31 [Zhang, X.; Wang, S.T.; Wang, Z.S.; Appl. Phys. Lett. 99, 113503, 2011.
]32 [Mi, H.; Zhang, X.; Ye, X.; Yang, S.; J. Power Sources 176, 403-409, 2008.
]33 [Cogal, S.; Ali, A.K.; Erten-Ela, S.; Celik Cogal, G.; Kulicek, J.; Micusik, M.; Oksuz, A.U.; J. Macromol. Sci. A 55, 317-323, 2018.
]34 [Pradhan, S.C.; Soman, S.; Surf. Interfaces. 5, 100030, 2021.
]35 [Theerthagiri, J.; Senthil, A.R.; Madhavan, J.; Maiyalagan, T.; Chem Electro Chem. 2, 928-945, 2015.
_||_
]1[ Mohiuddin, O.; Obaidullah, M.; Sabah, C.; Opt. Quantum Electron 50, 1-28, 2018.
]2[ Saranya, K.; Rameez, M.; Subramania, A.; Eur. Polym. J. 66, 207-227, 2015.
]3 [Bahramian, A.; Kerami, A.; Vashai, D.; J. Appl. Chem. 13, 73-84, 2019.
]4 [Sharma, S.; Siwach, B.; Ghoshal, S.; Mohan, D.; Renew. Sust. Energ. Rev. 70, 529-537, 2017.
]5 [Kumara, N.; Lim, A.; Lim, C. M.; Petra, M. I.; Ekanayake, P.; Renew. Sust. Energ. Rev. 78, 301-317, 2017.
]6 [Ahmad, M.S.; Pandey, A.K.; Abd Rahim, N.; Renew. Sust. Energ. Rev. 77, 89–108, 2017.
]7 [Gong, J.; Sumathy, K.; Qiao, Q.; Zhou, Z.; Renew. Sust. Energ. Rev. 68, 234-246, 2017.
]8 [Azimi, J.; Kiani, G.; Karimzad Ghavidel, A.; Mahdavinia, M.; Karafan Quarterly Scientific Journal 2022. (In press)
]9 [Tomar, N.; Dhaka, V.S.; Surolia, P.K.; Mater. Today: Proc. 43, 2975-2978, 2021.
]10 [ Pei, J.; Guo, F; .Zhang, J.; Zhou, B.; Bi, Y.; Li, R.; J. Clean. Prod. 288, 125-338, 2021.
]11 [Xia, J.; Chen, L.; Yanagida, S.; J. Mater. Chem. 21, 4644-4649, 2011.
]12 [Farooq, S.; Tahir, A.A.; Krewer, U.; Bilal, S.; Electrochim. Acta 320, 134544, 2019.
]13 [Li, Q.; Wu, J.; Tang, Q.; Lan, Z.; Li, P.; Lin, J.; Fan, L.; Electrochem. Commun. 10, 1299-1302, 2008.
]14 [Ghafoor, U.; Aqeel, A.B.; Zaman, U.K.U.; Zahid, T.; Noman, M.; Ahmad, M.S.; Energies 14, 3786, 2021.
]15 [Tas, R.; Can, M.; Sonmezoglu, S.; IEEE J. Photovolt. 7, 792-801, 2017.
]16 [Li, Q.; Wu, J.; Tang, Q.; Lan, Z.; Li, P.; Lin, J.; Fan, L.; Electrochem. commun. 10, 1299-1302, 2008.
]17 [Pan, L.; Qiu, H.; Dou, C.; Li, Y.; Pu, L.; Xu, J.; Shi, Y.; Int. J. Mol. Sci. 11, 2636-2657, 2010.
]18 [Rahman, M.S.; Hammed, W.A.; Yahya, R.B.; Mahmud, H.N.M.E.; J. Polym. Res. 23, 1-13, 2016.
]19 [Ghani, S.; Sharif, R.; Bashir, S.; Ashraf, A.; Shahzadi, S.; Zaidi, A.A.; Kamboh, A.H.; Mater Sci Semicond 31, 588-592, 2015.
]20 [Yue, G.; Zhang, X.A.; Wang, L.; Tan, F.; Wu, J.; Jiang, Q.; Lan, Z.; Electrochim. Acta .129, 229-236, 2014.
]21 [Xiao, Y.; Wu, J.; Yue, G.; Lin, J.; Huang, M.; Lan, Z.; Fan, L; Electrochim. Acta. 85, 432-437, 2012.
]22 [Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H.; Chem. Rev. 110, 6595-6663, 2010.
]23 [Upadhyay, J.; Kumar, A.; Gogoi, B.; Buragohain, A.K.; Mater. Sci. Eng. C. 54, 8-13, 2015.
]24 [Liang, B.; Qin, Z.; Zhao, J.; Zhang, Y.; Zhou, Z.; Lu, Y.; J. Mater. Chem. 2, 2129-2135, 2014.
]25 [Selvapriya, R.; Mayandi, J.; Ragavendran, V.; Sasirekha, V.; Vinodhini, J.; Pearce, J. M.; Ceram. Int. 45, 7268-7277, 2019.
]26 [Selvaraj, P.; Roy, A.; Ullah, H.; Sujatha Devi, P.; Tahir, A.A.; Mallick, T.K.; Sundaram, S.; Int. J. Energy Res. 43, 523-534, 2019.
]27 [Rodrigues, D.F.; Santos, F.; Abreu, C.M.; Coelho, J.F.; Serra, A.C.; Ivanou, D.; Mendes, A.; ACS Sustain. Chem. Eng. 9, 5981-5990, 2021.
]28 [Kalyanasundaram, K.; Grätzel, M.; Mater. Lett. 4, 88-90, 2009.
]29 [Hardani, H.; Ridwan Harahap, M.; Suhada, A.; Int. J. Thin Film Sci. Technol. 11, 6, 2022.
]30 [Chikate, B.V.; Sadawarte, Y.; Sewagram, B.; Int. J. Comput. Appl. 1, 0975-8887, 2015.
]31 [Zhang, X.; Wang, S.T.; Wang, Z.S.; Appl. Phys. Lett. 99, 113503, 2011.
]32 [Mi, H.; Zhang, X.; Ye, X.; Yang, S.; J. Power Sources 176, 403-409, 2008.
]33 [Cogal, S.; Ali, A.K.; Erten-Ela, S.; Celik Cogal, G.; Kulicek, J.; Micusik, M.; Oksuz, A.U.; J. Macromol. Sci. A 55, 317-323, 2018.
]34 [Pradhan, S.C.; Soman, S.; Surf. Interfaces. 5, 100030, 2021.
]35 [Theerthagiri, J.; Senthil, A.R.; Madhavan, J.; Maiyalagan, T.; Chem Electro Chem. 2, 928-945, 2015.