Effect of Hydrazine hydrate on copolymer (Methyl methacrylate-Maleic anhydride) properties: thermal stability, transparency and corrosion inhibition
Subject Areas :fariborz atabaki 1 * , gholamali kohmareh 2 * , samira sarikhani 3 *
1 - دانشیار شیمی آلی، دانشکده شیمی ، دانشگاه صنعتی مالک اشتر، اصفهان، ایران
2 - دانشیار شیمی آلی پلیمر، دانشکده شیمی، دانشگاه اصفهان ، اصفهان، ایران.
3 - دانشجوی دکترا دانشکده شیمی، دانشگاه صنعتی مالک اشتر، اصفهان، ایران
Keywords: Hydrazine hydrate, Corrosion Inhibitor, Potentiodynamic polarization, Poly (methyl methacrylate-co-maleic anhydride),
Abstract :
In this study, first copolymer (methyl methacrylate-maleic anhydride) was synthesized and then it reacted with different amount of hydrazine hydrate. Primary copolymers and products were detected by Fourier transform infrared spectroscopy and nuclear magnetic resonance (NMR), the glass refractive temperatures (Tg) were determined by thermal decomposition (TGA-DSC). The results showed that copolymerization of methyl methacrylate with maleic anhydride increased the thermal stability of the polymer compared to poly (methyl methacrylate) also addition of hydrazine improved the thermal stability of the copolymer. The percentage of elements in the copolymer reacted with hydrazine was determined using elemental analysis (CHNS) and their transparency with the spectrum of light transmission in the visible-ultraviolet region showed that although copolymerization reduced the transparency and light transmission in the visible region but Increasing hydrazine not only solves this problem but also makes the product more transparent than poly PMMA. Also Solutions with concentrations of 50 to 200 ppm of primary copolymer and two of the products were prepared and theirs inhibitory performance on corrosion of low carbon steel in 0.05 M hydrochloric acid (HCl) solution was investigated using potentiodynamic polarization, X-ray energy scattering analysis (EDX) and weight loss methods. The results confirm the increased corrosion inhibitory power of the copolymer in acidic environment.
[1] Ali, U.; Juhanni , K.A.K.; Buang, N.A.; Polymer Reviews 55(4), 678-705, 2015.
[2] Zafar, M.S.; Polymers 12(10), 1-28, 2020.
[3] Hungenberg, K.D. and Bandermann, F.; Die Makromolekulare Chemie 184(7), 1423-1439, 1983.
[4] Araújo, E., Hage Jr, E. and Carvalho, A.; Journal of applied polymer science 90(10), 2643-2647, 2003.
[5] Teodorescu, M.; European polymer journal 38(5), 841-846, 2002.
[6] Wang, S.; Hu, J.; Gui, X.; Lin, S.; Tu, Y.; Journal of The Electrochemical Society 168(2), 020514, 2021.
[7] Wu, Y.; Gao, J.; Fan, S.; Gu, Q.; Liu, Q.; Wang, Q.; Tang, X.; Fang, Q.; European Polymer Journal 156, 110609, 2021.
[8] Xie, W.; Wang, B., Liu, Y., Wang, Q. and Yang, Z.; Reactive and Functional Polymers 153, 104631, 2020.
[9] Al-Odayni, A.-B.; Saeed, W.S.; Ahmed, A.Y.B.H.; Alrahlah, A.; Al-Kahtani, A.; Aouak, T.; Polymers 12(1), 160-188, 2020.
[10] Li, Y.; Guo, H.; RSC Advances 10(4), 1981-1988, 2020.
[11] Popa, S.; Saeed, W.S.; Ahmed, A.Y.B.H.; Alrahlah, A.; Al-Kahtani, A.; Aouak, T.; Polymer Bulletin 78(12), 1-21, 2021.
[12] Hemmati, K., Masoumi, A. and Ghaemy, M.; Polymer 59, 49-56, 2015.
[13] Chopra, D.; Kontopoulou, M.; Vlassopoulos, D.; Hatzikiriakos, S.G; Rheologica acta 41(1), 10-24, 2002.
[14] Yilmaz, E.; Journal of Applied Polymer Science 138(40), 51745, 2021.
[15] Atabaki, F.; Abdolmaleki, A.; Barati, A.V.; Colloid and Polymer Science 294(2), 455-462, 2016.
[16] Jassim, I.K.; Mohammed, I.Y.; Salman, S.; 736, 42042-42054, 2020.
[17] Hua, C.; Chen, K.; Wang, Z.; Guo, X.; Progress in Organic Coatings. 143, 105628, 2020.
[18] Pastor, Y.; Orellana, J.; Pastor, J.; Calle, F.; Biomedical Journal of Scientific & Technical Research 35(1), 27312, 2021.
[19] Bacali, C.; Carpa, R.; Buduru, S.; Moldovan, M.L.; Baldea, I.; Constantin, A.; Moldovan, M.; Prodan, D.; Lucaciu, O.; Catoi, F.; Nanomaterials 11(7), 1643-1658, 2021.
[20] Fatalla, A.A.; Tukmachi, M.S.; Jani, G.H.; Materials Science and Engineering 987, 1-9, 2020.
[21] Shaari, H.A.H. et al., Polymers 13(12), 1939-1966, 2021.
[22] Lupi, F.F.; Giammaria, T.J.; Seguini, G.; Ceresoli, M..; ACS Applied Materials & Interfaces 13, 1-40, 2021.
[23] Li, C.P.; Tenent,R.C.; Wolden, C.A.; Polymer Engineering & Science 60(3), 553-557, 2020.
[24] Atabaki, F.; Jahangiri, S.; Pahnavar, Z.; Protection of Metals and Physical Chemistry of Surfaces 55(6), 1161-1172, 2019.
[25] Lin, Y;. Singh, A.; Ebenso, E.E.; Wu, Y.; Journal of the Taiwan Institute of Chemical Engineers 1040, 1-9, 2014.
[26] Hamdy H.H.; Abdelghanib, E.; Amina, M.A.; Electrochimica Acta. 52, 6359–6366, 2007.
[27] Parameswari K.; Chitra, S.; Selvaraj, A.; Brindha, S.; Menaga, M.; Portugaliae Electrochimica Acta. 30(2), 89-98, 2012.
[28] Rahimi-Zinab, A.; Chaghazardi, M.; Rezaierod, A.; Journal of Applied Research in Chemistry 8(2), 65-75, 2014.
[29] Rani, B.; Basu, B.B.J.; International Journal of corrosion 2012, 1-15, 2012.
[30] Atabaki, F.; Jahangiri, Sh.; Journal of Applied research in chemistry 15(2), 44-61, 2021.
[31] Sadiq, A.S.; Al-Tamimi, E.O.; Research Journal of Pharmacy and Technology 14(7), 3721-3726, 2021.
[32] Li, X.-G. Wang, H.-Y.; Huang, M.-R.; Macromolecules 40(5), 1489-1496, 2007.
[33] Lin, Y.; Singh, A.; Ebenso, E.E.; Wu, Y.; Zhu, C. and Zhu, H.;; Journal of the Taiwan Institute of Chemical Engineers. 46, 214-222, 2015.
[34] Büyüksağiş, A., Çiçek, H.; Bütün, V.; Protection of Metals and Physical Chemistry of Surfaces 55(5), 963-972, 2019.
[35] Büyüksağiş, A. Çiçek, H. and Bütün, V.; Protection of Metals and Physical Chemistry of Surfaces. 55(5), 951-962, 2019.
[36] Yilmaz, N.; Fitoz, A.; Emregül, K.C.; Corrosion Science 111, 110-120, 2016.
[37] Tiu, B.D.B.; Advincula, R.C.; Reactive and Functional Polymer 95, 25-45, 2015.
_||_
[1] Ali, U.; Juhanni , K.A.K.; Buang, N.A.; Polymer Reviews 55(4), 678-705, 2015.
[2] Zafar, M.S.; Polymers 12(10), 1-28, 2020.
[3] Hungenberg, K.D. and Bandermann, F.; Die Makromolekulare Chemie 184(7), 1423-1439, 1983.
[4] Araújo, E., Hage Jr, E. and Carvalho, A.; Journal of applied polymer science 90(10), 2643-2647, 2003.
[5] Teodorescu, M.; European polymer journal 38(5), 841-846, 2002.
[6] Wang, S.; Hu, J.; Gui, X.; Lin, S.; Tu, Y.; Journal of The Electrochemical Society 168(2), 020514, 2021.
[7] Wu, Y.; Gao, J.; Fan, S.; Gu, Q.; Liu, Q.; Wang, Q.; Tang, X.; Fang, Q.; European Polymer Journal 156, 110609, 2021.
[8] Xie, W.; Wang, B., Liu, Y., Wang, Q. and Yang, Z.; Reactive and Functional Polymers 153, 104631, 2020.
[9] Al-Odayni, A.-B.; Saeed, W.S.; Ahmed, A.Y.B.H.; Alrahlah, A.; Al-Kahtani, A.; Aouak, T.; Polymers 12(1), 160-188, 2020.
[10] Li, Y.; Guo, H.; RSC Advances 10(4), 1981-1988, 2020.
[11] Popa, S.; Saeed, W.S.; Ahmed, A.Y.B.H.; Alrahlah, A.; Al-Kahtani, A.; Aouak, T.; Polymer Bulletin 78(12), 1-21, 2021.
[12] Hemmati, K., Masoumi, A. and Ghaemy, M.; Polymer 59, 49-56, 2015.
[13] Chopra, D.; Kontopoulou, M.; Vlassopoulos, D.; Hatzikiriakos, S.G; Rheologica acta 41(1), 10-24, 2002.
[14] Yilmaz, E.; Journal of Applied Polymer Science 138(40), 51745, 2021.
[15] Atabaki, F.; Abdolmaleki, A.; Barati, A.V.; Colloid and Polymer Science 294(2), 455-462, 2016.
[16] Jassim, I.K.; Mohammed, I.Y.; Salman, S.; 736, 42042-42054, 2020.
[17] Hua, C.; Chen, K.; Wang, Z.; Guo, X.; Progress in Organic Coatings. 143, 105628, 2020.
[18] Pastor, Y.; Orellana, J.; Pastor, J.; Calle, F.; Biomedical Journal of Scientific & Technical Research 35(1), 27312, 2021.
[19] Bacali, C.; Carpa, R.; Buduru, S.; Moldovan, M.L.; Baldea, I.; Constantin, A.; Moldovan, M.; Prodan, D.; Lucaciu, O.; Catoi, F.; Nanomaterials 11(7), 1643-1658, 2021.
[20] Fatalla, A.A.; Tukmachi, M.S.; Jani, G.H.; Materials Science and Engineering 987, 1-9, 2020.
[21] Shaari, H.A.H. et al., Polymers 13(12), 1939-1966, 2021.
[22] Lupi, F.F.; Giammaria, T.J.; Seguini, G.; Ceresoli, M..; ACS Applied Materials & Interfaces 13, 1-40, 2021.
[23] Li, C.P.; Tenent,R.C.; Wolden, C.A.; Polymer Engineering & Science 60(3), 553-557, 2020.
[24] Atabaki, F.; Jahangiri, S.; Pahnavar, Z.; Protection of Metals and Physical Chemistry of Surfaces 55(6), 1161-1172, 2019.
[25] Lin, Y;. Singh, A.; Ebenso, E.E.; Wu, Y.; Journal of the Taiwan Institute of Chemical Engineers 1040, 1-9, 2014.
[26] Hamdy H.H.; Abdelghanib, E.; Amina, M.A.; Electrochimica Acta. 52, 6359–6366, 2007.
[27] Parameswari K.; Chitra, S.; Selvaraj, A.; Brindha, S.; Menaga, M.; Portugaliae Electrochimica Acta. 30(2), 89-98, 2012.
[28] Rahimi-Zinab, A.; Chaghazardi, M.; Rezaierod, A.; Journal of Applied Research in Chemistry 8(2), 65-75, 2014.
[29] Rani, B.; Basu, B.B.J.; International Journal of corrosion 2012, 1-15, 2012.
[30] Atabaki, F.; Jahangiri, Sh.; Journal of Applied research in chemistry 15(2), 44-61, 2021.
[31] Sadiq, A.S.; Al-Tamimi, E.O.; Research Journal of Pharmacy and Technology 14(7), 3721-3726, 2021.
[32] Li, X.-G. Wang, H.-Y.; Huang, M.-R.; Macromolecules 40(5), 1489-1496, 2007.
[33] Lin, Y.; Singh, A.; Ebenso, E.E.; Wu, Y.; Zhu, C. and Zhu, H.;; Journal of the Taiwan Institute of Chemical Engineers. 46, 214-222, 2015.
[34] Büyüksağiş, A., Çiçek, H.; Bütün, V.; Protection of Metals and Physical Chemistry of Surfaces 55(5), 963-972, 2019.
[35] Büyüksağiş, A. Çiçek, H. and Bütün, V.; Protection of Metals and Physical Chemistry of Surfaces. 55(5), 951-962, 2019.
[36] Yilmaz, N.; Fitoz, A.; Emregül, K.C.; Corrosion Science 111, 110-120, 2016.
[37] Tiu, B.D.B.; Advincula, R.C.; Reactive and Functional Polymer 95, 25-45, 2015.