Preparation and evaluation of polyvinyl alcohol nanocomposite containing zinc oxide nanoparticles and montmorillonite
Subject Areas :Negar Motakef Kazemi 1 * , elaheh mollaakbari 2 , Raheleh Halabian 3
1 - Tehran Medical Sciences, Islamic Azad University,
2 - Tehran Medical Sciences, Islamic Azad University,
3 - Baqiyatallah University of Medical Sciences
Keywords: nanocomposite, Packaging, Zinc Oxide Nanoparticles, Polyvinyl Alcohol, montmorillonite,
Abstract :
The purpose of this research is to investigate the mechanical, antibacterial, and cytotoxic properties of biocompatible polyvinyl alcohol (PVOH) nanocomposite modified with zinc oxide (ZnO) nanoparticles and montmorillonite (MMT) to prepare a film for use in food packaging. Zinc oxide nanoparticles were synthesized by hydrothermal method via chemical reduction process. This method was performed using zinc acetate salt as a metal precursor, soda as reductant and water as a solvent for 1 hour at a temperature of 80°C. The samples were characterized by X-ray diffraction (XRD) to evaluate the crystal structure, and field emission scanning electron microscope (FESEM) to check the size of the particles and morphology of the samples. The mechanical properties of the samples were investigated. The obtained results showed that the moisture content in the optimal film was reduced to 1.01 x 10-8 g/m3 and the tensile strength and Young's modulus were increased to 0.492 MPa and 24.1 Pa, respectively. The antibacterial activity against Escherichia coli was evaluated by the agar well method and the final nanocomposite showed the highest antibacterial property with the non-growth halo of 0.64 mm. Cytotoxicity of the samples was recorded using the MTT assay method on the HEK293 cell line after 1, 3, and 5 days. The highest percentage of normal cell viability was observed at the concentration of 0.25 mg/ml of the sample and the final nanocomposite showed the highest cell viability. Based on the obtained results, nanocomposite containing zinc oxide nanoparticles and montmorillonite can have a good potential for use in food packaging industries.
[1] Othman, S.H.; Agric Agric Sci Procedia. 2, 296-303, 2014.
[2] Bari, S.S.; Chatterjee, A.; Mishra, S.; Polym Rev. 56(2), 287-328, 2016.
[3] Ebnerasool, F.S.; Motakef Kazemi, N.; AMECJ. 2(2), 5-12, 2019.
[4] Sanuja, S.; Agalya, A.; Umapathy, M.; Int. J. Polym. Mater. Polym. Biomater. 63(14), 733-740, 2014.
[5] Salmas, C.; Giannakas, A.; Katapodis, P.; Leontiou, A.; Moschovas, D.; Karydis-Messinis, A.; Nanomaterials 10(6), 1079, 2020.
[6] Tarapow, J.A.; Bernal, C.R.; Alvarez, V.A.; J. Appl. Polym. Sci. 111(2), 768-778, 2009.
[7] Hu, C.; Xu, Z.; Xia, M.; Vet. Microbiol. 109(1-2), 83-88, 2005.
[8] Tayel, A.A.; EL‐TRAS, W.F.; Moussa, S.; EL‐BAZ, A.F.; Mahrous, H.; Salem, M.F.; Brimer, L.; J. Food Saf. 31(2), 211-218, 2011.
[9] De Azeredo, H.M.; Int. Food Res. J. 42(9), 1240-1253, 2009.
[10] Lee, M.; Kim, D.; Kim, J.; Kyun Oh, J.; Castaneda, H.; Ho Kim, J.; ACS Appl. Bio Mater. 3(10), 6672-6679, 2020.
[12] Aslam, M.; Kalyar, M.A.; Ali Raza, Z.; Polym. Eng. Sci. 58(12), 2119-2132, 2018.
[12] Cazón, P.; Vázquez, M.; Velazquez, G.; Carbohydr. Polym. 195, 432-443, 2018.
[13] Jain, N.; Kumar Singh, V.; Chauhan, S.; JMBM. 26(5–6), 213-222, 2017.
[14] Suganthi, S.; Vignesh, S.; Kalyana Sundar, J.; Raj, V.; Appl. Water Sci. 10, 100-111, 2020.
[15] Haghighi, H.; Kameni Leugoue, S.; Pfeifer, F.; Wilhelm Siesler, H.; Licciardello, F.; Fava, P.; Pulvirenti, A.; Food Hydrocoll. 100, 105419, 2020.
[16] El Fawal, G.; Shehata, M.; Wang, H.; Egypt. J. Chem. 63(8), 3029-3039, 2020.
[17] Tan, R.; Li, F.; Zhang, Y.; Yuan, Z.; Feng, X.; Zhang, W.; Liang, T.; Cao, J.; De Hoop, C.F.; Peng, X.; Huang, X.; J. Nanomater. 2021, 1, 2021.
[18] Musetti, A.; Paderni, K.; Fabbri, P.; Pulvirenti, A.; Al-Moghazy, M.; Fava, P.; Food Sci. 79(4), E577-82, 2014.
[19] Mohammadi, S.; Babaei, A.; Int. J. Biol. Macromol. 201, 528-538, 2022.
[20] Jayakumar, A.; Radoor, S.; Nair, I.C.; Siengchin, S.; Parameswaranpillai, J.; Ka, R.E.; Food Packag. Shelf Life 30, 100727, 2021.
[21] Schiessl, S.; Kucukpinar, E.; Cros, S.; Miesbauer, O.; Langowski, H.C.; Eisner, P.; Front Nutr. 9, 790157, 2022.
[22] Mathew, S.; Mathew, J.; Radhakrishnan, E.K.; J. Polym. Res. 26(9), 223, 2019.
[23] Tran Pham, B.T.; Thi Duong, T.H.; Thi Nguyen, T.; Van Nguyen, D.; Dung Trinh, C.; Giang Bach, L.; J. Polym. Res. 28, 1, 2021.
[24] Paton, J.C.; Paton, A.W.; Clin. Microbiol. Rev. 11(3), 450-479, 1998.
[25] Tankhiwale, R.; Bajpai, S.; Colloids Surfacs B 90, 16-20, 2012.
[26] Bruna, J.; Peñaloza, A.; Guarda, A.; Rodríguez, F.; Galotto, M.; Appl. Clay Sci. 58, 79-87, 2012.
[27] Abd-Elrahman, M.I.; Nanosc Microsc Therm Eng. 17(3), 194-203, 2012.
[28] Viswanath, V.; Sreedharan Nair, S.; Subodh, G.; Muneera, C.I.; Mater. Res. Bull. 112, 281-291, 2019.
[29] Liu, G.; Song, Y.; Wang, J.; Zhuang, H.; Ma, L.; Li, C.; LWT-Food Sci Technol. 57(2), 562-568, 2014.
[30] Chakraborty, S.; Anoop, V.; George, N.; Bhagyasree, T.; Mary, N.L.; SN Appl. Sci. 1(6), 1-13, 2019.
[31] Khalilipour, A.; Paydayesh, A.; J. Macromol. Sci. Phys. 58(2), 371-384, 2018.
[32] Mahmoudi Alashti, T.; Motakef-Kazemi, N.; shojaosadati, S.A.; IJCCE. 40(1), 1-9, 2021.
[33] Hajiashrafi, S.; Motakef-Kazemi, N.; Nanomed Res J. 3(1), 44-50, 2018.
[34] Hajiashrafi, S.; Motakef-Kazemi, N.; Heliyon. 5, e02152, 2019.
[35] Li, X.; Xing, Y.; Li, W.; Jiang, Y.; Ding, Y.; FSTI. 16(3), 225-232, 2010.
[36] Tamimi, L.; Mohammadi Nafchi, A.; Hashemi‐Moghaddam, H.; Baghaie, H.; Food Sci Nutr. 9(8), 4497–4508, 2021.
[37] Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D.; Nano-Micro Lett. 7(3), 219–242, 2015.
[38] Yang, S.T.; Liu, J.H.; Wang, J.: Yuan, Y.; Cao, A.; Wang, H.; Liu, Y.; Zhao, Y.; J Nanosci Nanotechnol. 10, 8638–8645, 2010.
[39] Liu, Q.; Liu, Y.; Xiang, S.; Mo, X.; Su, S.; Zhang, J.; Appl. Clay Sci. 51(3), 214-219, 2011.
_||_[1] Othman, S.H.; Agric Agric Sci Procedia. 2, 296-303, 2014.
[2] Bari, S.S.; Chatterjee, A.; Mishra, S.; Polym Rev. 56(2), 287-328, 2016.
[3] Ebnerasool, F.S.; Motakef Kazemi, N.; AMECJ. 2(2), 5-12, 2019.
[4] Sanuja, S.; Agalya, A.; Umapathy, M.; Int. J. Polym. Mater. Polym. Biomater. 63(14), 733-740, 2014.
[5] Salmas, C.; Giannakas, A.; Katapodis, P.; Leontiou, A.; Moschovas, D.; Karydis-Messinis, A.; Nanomaterials 10(6), 1079, 2020.
[6] Tarapow, J.A.; Bernal, C.R.; Alvarez, V.A.; J. Appl. Polym. Sci. 111(2), 768-778, 2009.
[7] Hu, C.; Xu, Z.; Xia, M.; Vet. Microbiol. 109(1-2), 83-88, 2005.
[8] Tayel, A.A.; EL‐TRAS, W.F.; Moussa, S.; EL‐BAZ, A.F.; Mahrous, H.; Salem, M.F.; Brimer, L.; J. Food Saf. 31(2), 211-218, 2011.
[9] De Azeredo, H.M.; Int. Food Res. J. 42(9), 1240-1253, 2009.
[10] Lee, M.; Kim, D.; Kim, J.; Kyun Oh, J.; Castaneda, H.; Ho Kim, J.; ACS Appl. Bio Mater. 3(10), 6672-6679, 2020.
[12] Aslam, M.; Kalyar, M.A.; Ali Raza, Z.; Polym. Eng. Sci. 58(12), 2119-2132, 2018.
[12] Cazón, P.; Vázquez, M.; Velazquez, G.; Carbohydr. Polym. 195, 432-443, 2018.
[13] Jain, N.; Kumar Singh, V.; Chauhan, S.; JMBM. 26(5–6), 213-222, 2017.
[14] Suganthi, S.; Vignesh, S.; Kalyana Sundar, J.; Raj, V.; Appl. Water Sci. 10, 100-111, 2020.
[15] Haghighi, H.; Kameni Leugoue, S.; Pfeifer, F.; Wilhelm Siesler, H.; Licciardello, F.; Fava, P.; Pulvirenti, A.; Food Hydrocoll. 100, 105419, 2020.
[16] El Fawal, G.; Shehata, M.; Wang, H.; Egypt. J. Chem. 63(8), 3029-3039, 2020.
[17] Tan, R.; Li, F.; Zhang, Y.; Yuan, Z.; Feng, X.; Zhang, W.; Liang, T.; Cao, J.; De Hoop, C.F.; Peng, X.; Huang, X.; J. Nanomater. 2021, 1, 2021.
[18] Musetti, A.; Paderni, K.; Fabbri, P.; Pulvirenti, A.; Al-Moghazy, M.; Fava, P.; Food Sci. 79(4), E577-82, 2014.
[19] Mohammadi, S.; Babaei, A.; Int. J. Biol. Macromol. 201, 528-538, 2022.
[20] Jayakumar, A.; Radoor, S.; Nair, I.C.; Siengchin, S.; Parameswaranpillai, J.; Ka, R.E.; Food Packag. Shelf Life 30, 100727, 2021.
[21] Schiessl, S.; Kucukpinar, E.; Cros, S.; Miesbauer, O.; Langowski, H.C.; Eisner, P.; Front Nutr. 9, 790157, 2022.
[22] Mathew, S.; Mathew, J.; Radhakrishnan, E.K.; J. Polym. Res. 26(9), 223, 2019.
[23] Tran Pham, B.T.; Thi Duong, T.H.; Thi Nguyen, T.; Van Nguyen, D.; Dung Trinh, C.; Giang Bach, L.; J. Polym. Res. 28, 1, 2021.
[24] Paton, J.C.; Paton, A.W.; Clin. Microbiol. Rev. 11(3), 450-479, 1998.
[25] Tankhiwale, R.; Bajpai, S.; Colloids Surfacs B 90, 16-20, 2012.
[26] Bruna, J.; Peñaloza, A.; Guarda, A.; Rodríguez, F.; Galotto, M.; Appl. Clay Sci. 58, 79-87, 2012.
[27] Abd-Elrahman, M.I.; Nanosc Microsc Therm Eng. 17(3), 194-203, 2012.
[28] Viswanath, V.; Sreedharan Nair, S.; Subodh, G.; Muneera, C.I.; Mater. Res. Bull. 112, 281-291, 2019.
[29] Liu, G.; Song, Y.; Wang, J.; Zhuang, H.; Ma, L.; Li, C.; LWT-Food Sci Technol. 57(2), 562-568, 2014.
[30] Chakraborty, S.; Anoop, V.; George, N.; Bhagyasree, T.; Mary, N.L.; SN Appl. Sci. 1(6), 1-13, 2019.
[31] Khalilipour, A.; Paydayesh, A.; J. Macromol. Sci. Phys. 58(2), 371-384, 2018.
[32] Mahmoudi Alashti, T.; Motakef-Kazemi, N.; shojaosadati, S.A.; IJCCE. 40(1), 1-9, 2021.
[33] Hajiashrafi, S.; Motakef-Kazemi, N.; Nanomed Res J. 3(1), 44-50, 2018.
[34] Hajiashrafi, S.; Motakef-Kazemi, N.; Heliyon. 5, e02152, 2019.
[35] Li, X.; Xing, Y.; Li, W.; Jiang, Y.; Ding, Y.; FSTI. 16(3), 225-232, 2010.
[36] Tamimi, L.; Mohammadi Nafchi, A.; Hashemi‐Moghaddam, H.; Baghaie, H.; Food Sci Nutr. 9(8), 4497–4508, 2021.
[37] Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D.; Nano-Micro Lett. 7(3), 219–242, 2015.
[38] Yang, S.T.; Liu, J.H.; Wang, J.: Yuan, Y.; Cao, A.; Wang, H.; Liu, Y.; Zhao, Y.; J Nanosci Nanotechnol. 10, 8638–8645, 2010.
[39] Liu, Q.; Liu, Y.; Xiang, S.; Mo, X.; Su, S.; Zhang, J.; Appl. Clay Sci. 51(3), 214-219, 2011.