Determination of trace amount of Atrazine in aqueous samples by in situ solvent formation microextraction method using green solvents (ionic liquids) and high performance liquid chromatography
Subject Areas :Mehdi Hosseini 1 * , Mahdieh Chegeni 2 , vahid azizkhani 3
1 - Department of Chemistry, Faculty of Basic Science, Ayatollah Boroujerdi University, Boroujerd, Iran
2 - Department of Chemistry, Faculty of Basic Science, Ayatollah Boroujerdi University, Boroujerd
3 - استادیار شیمی آلی، گروه شیمی، دانشگاه پیام نور، تهران، ایران
Keywords: Atrazine, HPLC, Ionic liquids, In situ solvent formation microextraction,
Abstract :
A rapid, precise and sensitive method derivate from homogeneous liquid-liquid microextraction method namely in situ solvent formation microextraction using ionic liquids as green solvent and extractant phase to the analysis of trace amount of Atrazine in real water samples has been used. Here, the extractant phase, is a solvent from ionic liquids family namely 1-ethyl-3-methylimidazolium chloride [Emim][Cl] that is miscible in water and after interaction with analyte and adding of counter ion of Hexafluorophosphate [PF6-], convert to the immiscible ionic liquid of 1-ethyl-3-methylimidazolium hexafluorophosphate [Emim][PF6]. Initially and during extraction of analyte from aqueous phase, because to absence any common boundary between aqueous and organic phase, the extraction efficiency will be maximum. After extraction process, to separation of two phases apart and determination amount of extracted analyte, due to formation of immiscible ionic liquid in water, separation of phases it become possible. Effect of different analytical parameters on extraction efficiency such as sample solution pH containing analyte, ionic liquid amount, extraction time and counter ion amount were evaluated and optimum amount were determined. Characteristics of the method such as limit of detection (LOD), limit of quantification (LOQ), relative standard deviation (RSD) and linear dynamic range (LDR) were 1.78 µgL-1, 6.1 µgL-1, 12.3 ppt and 5-1500 µgL-1, respectively. The method was used successfully to extraction and determination of Atrazine in several real water samples. Determination of Atrazine amount was carried out by sensitive high performance liquid chromatography.
[1] Zhang, Y.; Li, X.; Zhang, M.; Liao, S.; Dong, P.; Xiao, J.; Zhang, Y.; Zeng, X.; Ceramics Inter. 43, 14082–14089, 2017.
[2] Gammon, D.W.; Aldous, C.N.; Carr, W.C.; Sanborn, K.R.; Pfeifer, K.F.; Pest Manage. Sci. 61, 331–335, 2005.
[3] Gianessi, L.P.; Marcelli, M.B.; Pesticide Use in U.S. Crop Production, Summary Report, National Center for Food and Agricultural Policy, Washington D.C., 2000.
[4] Zhou, Q.; Pang, L.; Xie, G.; Xiao, J.; Bai, H.; Anal. Sci. 25, 73–76, 2009.
[5] Usenko, S.; Hageman, K.J.; Schmedding, D.W.; Wilson, G.R.; Simonich, S.L.; Environ. Sci. Technol. 39, 6006–6015, 2005.
[6] Baranowska, I.; Barchanska, H.; Pacak, E.; Environ. Pollut. 143, 206–211, 2006,
[7] Wang, Y.; Shen, L.; Gong, Z.; Pan, J.; Zheng, X.; Xue, J.; Water Environ. Res. 91, 1009–1024, 2019.
[8] Zhang, X.; Ma, X.; Li, X.; Li, C.; Wang, R.; Chen, M.; Water Air Soil Pollut. 229, 270–281, 2018.
[9] Guan, S.H.; Huang, M.W.; Li, X.; Cai, Q.; Anal. Lett. 51, 613–625, 2018.
[10] Skaggs, C.S.; Logue, B.A.; J. Chromatogr. A. 1635, 461753, 2021.
[11] Islam, K.; Jha, K.S.; Chand, R.; Han, D.; Kim, Y.S.; Microelectronic Eng. 97, 391–39, 2012.
[12] Morais, S.; Tavares, O.; Baptista‐Paiga, P.C.; Delerue‐Matos, C.; Electrochem. 37, 3271–3286, 2004.
[13] Suarez, R.; Clavijo, S.; Gonzalez, A.; Cerda, V.; J. Sep. Sci. 41, 1096–1103, 2018.
[14] Swain, S.S.; Nayak, B.; Devi, N.; Das, S.; Sewin, N.; Hydrometallurgy 162, 63–70, 2016.
[15] Doner, G.; Ege, A.; Anal. Chim. Acta 547, 14–17, 2005.
[16] Vaezi, N.; Dalali, N.; Hosseini, M.; Iran. J. Anal. Chem. 4, 59–66, 2017.
[17] Meeravali, N.N.; Reddy, M.A.; Kumar, S.J.; Anal. Sci. 23, 351–356, 2007.
[18] Hosseini, M.; Dalali, N.; Mohammadnejad, S.; Int. J. Ind. Chem. 3, 1–6, 2012.
[19] Hashemi-Moghaddam, H.; Hosseni, M.; Mohammadhosseini, M.; Sep. Sci. Technol. 52, 1826–1834, 2017.
[20] Farajzadeh, M.A; Sorouraddin, S.M.; Mogaddam, M.R.A; Michrochim. Acta 181, 829–851, 2014.
[21] Chamsaz, M.; Arab-zavar, M.H.; Akhondzadeh, J.; Anal. Sci. 24, 799–801, 2008.
[22] Esrafili, A.; Baharfar, M.; Tajik, M.; Yamini, Y.; Ghambarian, M.; TrAC Trends Anal. Chem. 108, 314–322, 2018.
[23] Afzali, D.; Azadmehr, F.; Torkzadeh, M.; Sep. Sci. Technol. 51, 1509–1514, 2016.
[24] Baghdadi, M.; Shemirani, F.; Anal. Chim. Acta 634, 186–191, 2009.
_||_[1] Zhang, Y.; Li, X.; Zhang, M.; Liao, S.; Dong, P.; Xiao, J.; Zhang, Y.; Zeng, X.; Ceramics Inter. 43, 14082–14089, 2017.
[2] Gammon, D.W.; Aldous, C.N.; Carr, W.C.; Sanborn, K.R.; Pfeifer, K.F.; Pest Manage. Sci. 61, 331–335, 2005.
[3] Gianessi, L.P.; Marcelli, M.B.; Pesticide Use in U.S. Crop Production, Summary Report, National Center for Food and Agricultural Policy, Washington D.C., 2000.
[4] Zhou, Q.; Pang, L.; Xie, G.; Xiao, J.; Bai, H.; Anal. Sci. 25, 73–76, 2009.
[5] Usenko, S.; Hageman, K.J.; Schmedding, D.W.; Wilson, G.R.; Simonich, S.L.; Environ. Sci. Technol. 39, 6006–6015, 2005.
[6] Baranowska, I.; Barchanska, H.; Pacak, E.; Environ. Pollut. 143, 206–211, 2006,
[7] Wang, Y.; Shen, L.; Gong, Z.; Pan, J.; Zheng, X.; Xue, J.; Water Environ. Res. 91, 1009–1024, 2019.
[8] Zhang, X.; Ma, X.; Li, X.; Li, C.; Wang, R.; Chen, M.; Water Air Soil Pollut. 229, 270–281, 2018.
[9] Guan, S.H.; Huang, M.W.; Li, X.; Cai, Q.; Anal. Lett. 51, 613–625, 2018.
[10] Skaggs, C.S.; Logue, B.A.; J. Chromatogr. A. 1635, 461753, 2021.
[11] Islam, K.; Jha, K.S.; Chand, R.; Han, D.; Kim, Y.S.; Microelectronic Eng. 97, 391–39, 2012.
[12] Morais, S.; Tavares, O.; Baptista‐Paiga, P.C.; Delerue‐Matos, C.; Electrochem. 37, 3271–3286, 2004.
[13] Suarez, R.; Clavijo, S.; Gonzalez, A.; Cerda, V.; J. Sep. Sci. 41, 1096–1103, 2018.
[14] Swain, S.S.; Nayak, B.; Devi, N.; Das, S.; Sewin, N.; Hydrometallurgy 162, 63–70, 2016.
[15] Doner, G.; Ege, A.; Anal. Chim. Acta 547, 14–17, 2005.
[16] Vaezi, N.; Dalali, N.; Hosseini, M.; Iran. J. Anal. Chem. 4, 59–66, 2017.
[17] Meeravali, N.N.; Reddy, M.A.; Kumar, S.J.; Anal. Sci. 23, 351–356, 2007.
[18] Hosseini, M.; Dalali, N.; Mohammadnejad, S.; Int. J. Ind. Chem. 3, 1–6, 2012.
[19] Hashemi-Moghaddam, H.; Hosseni, M.; Mohammadhosseini, M.; Sep. Sci. Technol. 52, 1826–1834, 2017.
[20] Farajzadeh, M.A; Sorouraddin, S.M.; Mogaddam, M.R.A; Michrochim. Acta 181, 829–851, 2014.
[21] Chamsaz, M.; Arab-zavar, M.H.; Akhondzadeh, J.; Anal. Sci. 24, 799–801, 2008.
[22] Esrafili, A.; Baharfar, M.; Tajik, M.; Yamini, Y.; Ghambarian, M.; TrAC Trends Anal. Chem. 108, 314–322, 2018.
[23] Afzali, D.; Azadmehr, F.; Torkzadeh, M.; Sep. Sci. Technol. 51, 1509–1514, 2016.
[24] Baghdadi, M.; Shemirani, F.; Anal. Chim. Acta 634, 186–191, 2009.