Evaluating effect of material heterogeneity constants on stress intensity factors in the functional grated piezoelectric plate by using meshless local Petrov-Galerkin method (MLPG)
Subject Areas : Journal of New Applied and Computational Findings in Mechanical SystemsMohammad Moaddel 1 , shahram shahrooi 2
1 - Department of Mechanical Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
2 - Department of Mechanical Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
Keywords: Meshless local Petrov Galerkin method, Stress intensity factor, Material graded parameters, : Functionally graded piezoelectric material (FGPM),
Abstract :
[1] Park, S., Sun ,C., (1993), Effect of electric field on fracture of piezoelectric ceramics. International Journal of Fracture, 70(3), pp 203-216.
[2] Shindo, Y., Narita, F., Tanaka, K., (1996),Electroelastic intensification near anti-plane shear crack in orthotropic piezoelectric ceramic strip, in Theoretical and Applied Fracture Mechanics, pp 65-71.
[3] Zhong, Z., Shang, E., (2005), Exact analysis of simply supported functionally graded piezothermoelectric plates. Journal of Intelligent Material Systems and Structures, 16(7-8), pp 643-651.
[4] Enderlein, M., Ricoeur, A., Kuna, M., (2005), Finite element techniques for dynamic crack analysis in piezoelectrics. International Journal of Fracture, 134(3-4), pp 191-208.
[5] Kuna, M., (2006), Finite element analyses of cracks in piezoelectric structures: a survey. Archive of Applied Mechanics, 76(11), pp 725-745.
[6] Rao, B., Kuna, M., (2008), Interaction integrals for fracture analysis of functionally graded magnetoelectroelastic materials. International journal of fracture, 153(1), pp 15-37.
[7] Liu, G. R., Dai, K. Y., Lim, K. M., Gu, Y. T., (2002), A point interpolation mesh free method for static and frequency analysis of two-dimensional piezoelectric structures. Computational Mechanics, 29(6), pp 510-519.
[8] Sladek, J., Sladek, V., Pan, E., Young, D. L., (2014), Dynamic anti-plane crack analysis in functional graded piezoelectric semiconductor crystals. CMES: Computer Modeling in Engineering & Sciences, 99(4), pp 273-296.
[9] Li, X.L., Zhou, L.M., (2017), An element-free Galerkin method for electromechanical coupled analysis in piezoelectric materials with cracks. Advances in Mechanical Engineering,. 9(2), pp 1687814017693733.
[10] Sladek, J., Sladek, V., Zhang, C., Solek, P., Pan, E., (2007). Evaluation of fracture parameters in continuously nonhomogeneous piezoelectric solids. International Journal of Fracture, 145(4), pp 313-326.
[11] Atluri, S.N., (2004), The meshless method (MLPG) for domain & BIE discretizations, Tech Science Press.
[12] Fleming, M., Chu, Y. A., Moran, B., Belytschko, T., (1997), Enriched element‐free Galerkin methods for crack tip fields. International journal for numerical methods in engineering, 40(8), pp 1483-1504.
[13] Anderson, T.L., (2017), Fracture mechanics: fundamentals and applications, CRC press.
[14] Yan, Z., Jiang, L., (2009), Study of a propagating finite crack in functionally graded piezoelectric materials considering dielectric medium effect. International Journal of Solids and Structures,. 46(6), pp 1362-1372.
_||_