Experimental investigation of cooling photovoltaic panels using phase change material at different angles
Subject Areas : Journal of New Applied and Computational Findings in Mechanical Systemsmaziar mirakhorlo 1 , Mehran Rajabi Zargarabadi 2 , mohammad sadegh valipour 3
1 - researcher of semnan university
2 - Faculty of mechanical engineering, Semnan University
3 - Faculty of mechanical engineering semnan university
Keywords: ", phase change material", ", photovoltaic", cooling", ,
Abstract :
The performance improvement of a PV module with the application of phase change material (PCM) in a device known as a PV/PCM module was examined in an experiment. Two 90 watts PV module have been used in the test. One of which is used as reference module and the other as a cooled module. The aluminum enclosure is mounted on the back of the cooled module and is equipped by 50 aluminum pin fins to increase heat transfer. The study has been evaluated outdoors in two cases at two different angles using mixture of salt and water. Both the integrated cases maintained lower PV temperature than the reference PV module. The lower PV temperatures effected by the use of the PCMs prevented the associated PV power loss and increased PV conversion efficiencies.
1. Conti, J., Holtberg, P., Diefenderfer, J., LaRose, A., Turnure, J. T., Westfall, L. (2016). International energy outlook 2016 with projections to 2040 (No. DOE/EIA-0484 (2016)). USDOE Energy Information Administration (EIA), Washington, DC (United States). Office of Energy Analysis.
2. Feldman, D. J., Margolis, R. M. (2019). Q4 2018/Q1 2019 Solar Industry Update (No. NREL/PR-6A20-73992). National Renewable Energy Lab.(NREL), Golden, CO (United States).
3. Reddy, S. R., Ebadian, M. A., Lin, C. X. (2015). A review of PV–T systems: Thermal management and efficiency with single phase cooling. International Journal of Heat and Mass Transfer, 91, pp 861-871.
4. Bruno, F. (2004). Using Phase Change Materials (PDMs) for Space Heating and Cooling in Buildings (Doctoral dissertation, Airah Publications).
5. Chen, C., Guo, H., Liu, Y., Yue, H., Wang, C. (2008). A new kind of phase change material (PCM) for energy-storing wallboard. Energy and Buildings, 40(5), pp 882-890.
6. Farid, M. M., Chen, X. D. (1999). Domestic electrical space heating with heat storage. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 213(2), pp 83-92.
7. Ho, C. J., Chou, W. L., Lai, C. M. (2015). Thermal and electrical performance of a water-surface floating PV integrated with a water-saturated MEPCM layer. Energy Conversion and Management, 89, pp 862-872.
8. Indartono, Y. S., Suwono, A., & Pratama, F. Y. (2016). Improving photovoltaics performance by using yellow petroleum jelly as phase change material. International Journal of Low-Carbon Technologies, 11(3), pp 333-337.
9. Hasan, A., McCormack, S. J., Huang, M. J., Norton, B. (2014). Energy and cost saving of a photovoltaic-phase change materials (PV-PCM) system through temperature regulation and performance enhancement of photovoltaics. Energies, 7(3), pp 1318-1331.
10. Arıcı, M., Bilgin, F., Nižetić, S., Papadopoulos, A. M. (2018). Phase change material based cooling of photovoltaic panel: A simplified numerical model for the optimization of the phase change material layer and general economic evaluation. Journal of Cleaner Production, 189, pp 738-745.
11. Chandel, S. S., Agarwal, T. (2017). Review of cooling techniques using phase change materials for enhancing efficiency of photovoltaic power systems. Renewable and Sustainable Energy Reviews, 73, pp 1342-1351.
12. Pandey, A. K., Hossain, M. S., Tyagi, V. V., Abd Rahim, N., Jeyraj, A., Selvaraj, L., & Sari, A. (2018). Novel approaches and recent developments on potential applications of phase change materials in solar energy. Renewable and Sustainable Energy Reviews, 82, pp 281-323.
13. Obalanlege, M. A., Mahmoudi, Y., Douglas, R., Ebrahimnia-Bajestan, E., Davidson, J., & Bailie, D. (2020). Performance assessment of a hybrid photovoltaic-thermal and heat pump system for solar heating and electricity. Renewable Energy, 148, pp 558-572.
14. Daghigh, R., & Khaledian, Y. (2018). A novel photovoltaic/thermoelectric collector combined with a dual–Evaporator vapor compression system. Energy Conversion and Management, 158, pp 156-167.
15. Kalogirou, S. A., & Tripanagnostopoulos, Y. (2006). Hybrid PV/T solar systems for domestic hot water and electricity production. Energy conversion and management, 47(18-19), pp 3368-3382.
16. Palacio, M., Rincón, A., & Carmona, M. (2020). Experimental comparative analysis of a flat plate solar collector with and without PCM. Solar Energy, 206, pp 708-721.
17. Huang, M. J., Eames, P. C., & Norton, B. (2006). Phase change materials for limiting temperature rise in building integrated photovoltaics. Solar Energy, 80(9), 1121-1130.
18. Mittelman, G., Kribus, A., Mouchtar, O., & Dayan, A. (2009). Water desalination with concentrating photovoltaic/thermal (CPVT) systems. Solar Energy, 83(8), pp 1322-1334.
19. Churchill, S. W., & Chu, H. H. (1975). Correlating equations for laminar and turbulent free convection from a vertical plate. International journal of heat and mass transfer, 18(11), pp 1323-1329.
20. Bergman, T. L., Incropera, F. P., DeWitt, D. P., & Lavine, A. S. (2011). Fundamentals of heat and mass transfer. John Wiley & Sons.
.21 فرهاد کریمی نژاد، رضا کی پور. 1393. محاسبه زاویه بهینه پنل های نیروگاه فتوولتائیک برای تمام سال با استفاده از الگوریتم ژنتیک. اولین کنفرانس و نمایشگاه بین المللی انرژی خورشیدی.
_||_