Investigation of the effect of steelmaking slag on the microstructure and mechanical properties of spinel-reinforced magnesia mass
Subject Areas : Journal of New Applied and Computational Findings in Mechanical Systemsomid khojastezade 1 , Zohre Balak 2 *
1 - Department of Materials Science and Engineering, Ahv.C., Islamic Azad University, Ahvaz, Iran
2 -
Keywords: Magnesium mass, Spinel, Electric arc furnace, molten metal discharge outlet,
Abstract :
Today, the use of magnesia has become widespread due to its favorable properties and the need of various industries for alkaline refractories. However, it has some weaknesses, such as low thermal shock resistance. To address these issues, synthetic magnesium aluminate spinel (MgAl2O4) is used as an additive. Magnesium aluminate spinel, with a high melting point (approximately 2135°C), significantly improves the physical, mechanical, thermodynamic, and thermomechanical properties of magnesia-based refractories, particularly in cold compressive and flexural strength, creep resistance under load, thermal shock resistance, and wear resistance. This additive absorbs harmful impurities like iron oxide (Fe2O3) and prevents the formation of low-melting phases caused by impurities. Additionally, the mismatch in the thermal expansion coefficient between periclase (MgO) and spinel phases leads to the formation of microcracks and tensile stresses around the spinel grains, which enhances the strength and resistance of the samples. However, an excessive amount of spinel can lead to a decrease in properties due to excessive microcracking. In this study, synthetic spinel was used to improve the mechanical properties and increase the creep resistance of magnesia refractory bodies. The results showed that the optimal amount of spinel is 20% by weight. Phase and microstructural analyses using XRD and SEM also indicated that the magnesium aluminate phase predominantly forms at grain boundaries.
[1] گروه مهندسی متالورژی . انواع دیرگدازها (کاربرد و خواص). 1376;جهاد دانشگاهی دانشگاه صنعتی شریف.
[2] Xianhuai, X. Y., Lvping, F., Huazhi G., Huang. A., (2025). High temperature property enhancement of low carbon MgO-C refractory by introducing microporous magnesia. Ceramics International, DOI:10.1016/j.ceramint.2025.02.360.
[3] Wangding, P. Z., Wen Y., Junfeng, C., Guangqiang, L., Nan, L., (2024). Periclase-magnesium aluminate spinel ceramics filter with excellent purification efficiency on molten steel prepared from Mg(OH)2: Effect of fused MgO content. Journal of the European Ceramic Society. DOI:10.1016/j.jeurceramsoc.2024.116772.
[4] Díaz, L.A., Torrecillas, R., de Aza, A.H., Pena, P., (2007). Effect of spinel content on slag attack resistance of high alumina refractory castables. Journal of the European Ceramic Society, 27(16), pp 4623–4631.
[5] مصطفی صالحی رضا آبادي، احمد منشی، محمدرضا منشی، مجید جعفری. اسیدی و قلیایی سرباره بر ترکیبات نسوزهای اسپینلی منیزیتی - کرومیتی در کوره آند ذوب مس تاثیر اکسیدهای. فرآیندهای نوین در مهندسی مواد. 1392;7:75-82.
[6] سمیرا بیگلر, حسین سرپولکی، علیرضا سوری. بررسی اثر افزودنی Cr2O3 بر خواص فیزیکی و مکانیکی جرمهای ریختنی حاوی اسپینل فصلنامه فرآیندهای نوین در مهندسی مواد. 1391;1:81-7.
[7] رضا ایران خواه، محمدرضا رحیمی پور، محمد ذاکری و منصور رضوی. سنتز و سینتر درجای اسپینل شفاف آلومینات منیزیم نانوساختار با استفاده از سینتر پلاسما جرقه پلاسمای واکنشی،. نانو مواد. 1397;34:صفحه 77-1.
[8] Yaowen, L. W., Junqiang, W., Weili L., Zhitang S.,(2025). Effect of chelating agents on the adsorption and corrosion mechanism of magnesium aluminate spinel in chemical mechanical polishing. Ceramics International, DOI:10.1016/j.ceramint.2025.05.291.
[9] Oriana, B. L., Pablo, O., (2025). Recycling E-Waste into High-Value Ceramics: Synthesis of Porous Magnesium Aluminate Spinel from Recovered Aluminum of Spent Lithium-Ion Batteries and Bischofite. Thermochimica Acta, DOI:10.1016/j.tca.2025.180066.
[10] Yang, L. J., Lijie, H., Zhongxiang, S., Xin W., Keting Z., (2025). Hydrothermal synthesis and intrinsic luminescent properties of magnesium aluminate spinel. Journal of Alloys and Compounds, 2025;1010:178176.
[11] Junwei, H., Lanxi, F., Xiaoqing Z., Run Z., Longhui Z., Xiaohu Y., (2025). Shock induced damage and failure mechanisms of magnesium aluminate spinel based on an atomistically calibrated bond-based peridynamic model. International Journal of Solids and Structures, 314,113316.
[12] Khan, S.A., Zain, Z.M., Siddiqui, Z., Khan, W., Aabid, A., Baig, M., Mali, M.A., (2024) . Development of Magnesium Aluminate (MgAl2O4) Nanoparticles for refractory crucible application. PLOS ONE, DOI:10.1371/journal.pone.0296793.
[13] Wang, K., Tian H.Y., Yang, W., Liang, Y., Wang, H.L., Zhang R., An L.N., Shao G., (2024). A Review on Magnesium Aluminate Spinel Transparent Ceramics. Advanced Ceramic, 44(2), pp 77-116.
[14] Jiaxu, H., Jianhua, L., Shixing, W., (2025). Corrosion behavior and transmittance of magnesium aluminum spinel in aluminum electrolytic cell. International Journal of Applied Ceramic Technology, DOI:10.1111/ijac.15092.
[15] Alaa, M., Ramadan, M., Habib, A.O., Hamdy, A., Abdel, G., (2023) . Evaluating the role of magnesium aluminate nano spinel in phase composition, meso-porosity, compressive strength, and drying shrinkage of alkali-activated slag, .Construction and Building Materials. DOI:10.1016/j.conbuildmat.2023.133857.