Ranking of Production Personnel Using the Fuzzy TOPSIS Method in the Automotive Parts Manufacturing Industry (Case Study of Shayan Parts Manufacturing Company)
Subject Areas :MOHAMMAD KASHANI 1 * , مهناز احدزاده نمین 2
1 -
2 - Department of Basic sciences, Quds City Branch, Islamic Azad University, Tehran, Iran
Keywords: Ranking, Topsis, Skill, Performance, Efficiency,
Abstract :
The process of identifying and ranking personnel working in the organization is important for continuous improvement of the quality and quantity of production. Determining the correct criteria for selecting individuals, growth and advancement of organization members, training specialized and capable multi-skilled forces, creativity, and creating a competitive environment also play an important role in the organization. Therefore, it is better to consider a scientific method that, in addition to identifying efficient individuals, leads to increased employee efficiency and also creates a competitive advantage among them. The method of closest approach to the ideal answer was used to measure performance, the results of which can be used to identify good employees, create an identity within the organization, keep the values and goals of the group alive, create opportunities for promotion and effort, create a sense of competition among individuals, and also the level of employee satisfaction. Identifying the strengths and weaknesses of personnel and evaluating criteria. An organization that clearly and clearly specifies reward criteria for determining the points and ranking of its personnel with the support of scientific management and specialized methods as well as emphasizing collective interests also brings the highest level of job satisfaction. By observing these steps and using the TOPSIS method, we were able to identify the best personnel and develop motivation and competition. Also, with regular evaluation and continuous follow-up, you can make necessary improvements and align personnel towards the organization's goals and strategies
1) پهلوانیان حسین ، (1385)، تجربه ای موفق از کاربرد مدیریت راهبردی، یزد، انتشارات نیکو روش.
2) غفاریان وفا و کیانی غلامرضا ، (1380)، استراتژی اثر بخش، تهران، نشر فردا.
3) عالم تبريز اکبر ، باقرزاده محمد (1388)، تلفيقANP فازي و TOPSISتعديل شـده بـراي گـزينش تـأمين كننـده راهبـردي.پژوهشهاي مديريت،2 (3)149-181.
4) غضنفري مهدی ، رضايی محمود (1389)، مقدمه اي بر نظريه مجموعه هاي فازي. (چاپ دوم) تهـران: انتشـارات دانشـگاه علـم و صنعت ايران.
5) کاشانی محمد، امینی خوزانی محسن، هاشمی سید فرزاد (1403)، بررسی میزان تاثیر تغییر استراتژی تولید بر عملکرد مالی و توانایی رقابت اقتصادی در صنعت قطعه سازی خودرو (مطالعه موردی شرکت قطعه سازان شایان)، مقطع کارشناسی ارشد، دانشگاه آزاد اسلامی واحد شهر قدس.
6)
Moradi Leila, Rajaee Taher, Sadeghpoor Maedeh, (2020) Environmental risk assessment of Alborz Dam using TOPSIS and Fuzzy TOPSIS methods. Amirkabir Journal Of Civil Engineering,12(52) 3108-3091 7)
Yang T. and Hung C. (2007). Multipleattribute decision making methods for plant layout design problem. Robotics and Computer-Integrated Manufacturing, 23(1), 126–137 8)
Jafar Muhammad, Faizullah Faizullah, Naveed Amir, (2020) Prediction of Pakistan Super League-2020 Using TOPSIS and Fuzzy TOPSIS Methods. Journal Of Fuzzy Extension And Applications,2(1) 104-114 9)
Ataei Mohammad, (2016) Mining Method Selection By TOPSIS Approach. Symposium Of Earth Sciences. 10)
Vaidya, Kumar, (2006). Analytic Hierarchy Process: An Overview of Applications. European Journal of Operational Research, 169(1), 1-29 11)
Opricovic, Tzeng, (2004). Compromise solution by MCDM methods:A comparative analysis of Vikor and TOPSIS. European Journal of Operational Research, 156(2), 445-455. 12)
M. Hassanpour, (2019), Evaluation of Iranian Automotive Industries, International Journal of Research in Industrial Engineering 2019, 2(8) 115-139 13)
Zavadskas, E. K., Kaklauskas, A., & Kvederytė, N. (2001). Multivariant design and multiple criteria analysis of a building life cycle. Informatica, 12(1), 169-188. 14)
Kahraman, C; Cebi S; (2014). A comparative analysis for multi attribute selection among renewable energy alternatives using fuzzy axiomatic design and fuzz analytic hierarchy process. Energy,34(10) 1603-1617.