• Home
  • Hossein Aghamohammadi
  • OpenAccess
    • List of Articles Hossein Aghamohammadi

      • Open Access Article

        1 - The effect of kernel optimization in modeling drought phenomenon using computational intelligence (Case study: Sanandaj)
        Jahanbakhsh Mohammadi Alireza Vafaeinezhad Saeed Behzadi Hossein Aghamohammadi Amirhooman Hemmasi
        Drought is one of the most important natural disasters with devastating and harmful effects in various economic, social, and environmental fields. Due to the repetitive behavior of this phenomenon, if the appropriate solutions are not implemented, its destructive effect More
        Drought is one of the most important natural disasters with devastating and harmful effects in various economic, social, and environmental fields. Due to the repetitive behavior of this phenomenon, if the appropriate solutions are not implemented, its destructive effects can remain in the region for years after its occurrence. Most natural disasters, such as floods, earthquakes, hurricanes, and landslides in the short term, can cause severe financial and human damage to society, but droughts are slow-moving and creepy in nature, and their devastating effects appear gradually and over a longer period of time. Therefore, by modeling drought, it is possible to provide plans for drought preparation and reduce the damage caused by it. In this study, computational intelligence algorithms of Multi-Layer Perceptron neural network, Generalized Regression Neural Network, Support Vector Regression with support kernel, and Support Vector regression with the proposed kernel (Support Vector) Regression New kernel has been used to model the drought using the Standardized Precipitation Index. The modeling results, in most cases, showed better performance of the proposed SVR_N model than other models. The values of RMSE and R2 were 0.093 and 0.991, respectively, and the GRNN, MLP, and SVR models performed better in modeling after SVR_N, respectively. Modeling of drought phenomenon in modeling is supported by vector regression method. Manuscript profile
      • Open Access Article

        2 - Using a hybrid model of 3D GIS and meta-heuristic methods for optimizing tree shade coverage
        Mohsen Ghods Hossein Aghamohammadi Zanjirabad Alireza Vafaeinezhad Saeed Behzadi Alireza Gharagozlo
        Background and ObjectiveA method to reduce the absorption of solar radiation and prevent the creation of urban heat islands is to increase shade by vegetation. A shadow creating on buildings, causes houses to cool down, reduces energy consumption and costs, increases th More
        Background and ObjectiveA method to reduce the absorption of solar radiation and prevent the creation of urban heat islands is to increase shade by vegetation. A shadow creating on buildings, causes houses to cool down, reduces energy consumption and costs, increases the value of houses, and creates a proper visual effect and a sense of well-being and vitality. Although economically, the amount of savings due to shade and cooling of the air for a tree during its lifetime in different climatic regions is different and depends on the type of tree, the amount of shade during the day and in different seasons of the year, but its effect on energy savings and costs are definite.  The subject of the present study is strategic planning to increase the shade coverage of trees in urban residential areas. A simple way to create plenty of shade is to plant numerous trees around buildings. However, this method is impractical in many areas that face water shortages due to its high costs. In addition, the presence of additional shadows on the rooftop of the buildings will reduce the ability to be exposed to sunlight and the potential of using solar panels to generate electricity. So the main challenge is using a method that can provide maximum shade coverage on the facade surface and minimum shadow coverage on the rooftop with a few trees in optimal locations. The issue of locating trees with the aim of optimizing shade coverage, i.e. maximizing shade coverage on facades and opening components, and minimizing shadow coverage on the rooftop, is a Non-deterministic Polynomial hard (NP-hard) problem and has no exact solution. Therefore, the 3D Geographic Information System and the Ant Colony Optimization algorithm have been used for this purpose. Previous studies have often examined the effects of tree canopy shade on a single building. But in most cities in Iran, buildings are connected together and form a building block. So, instead of a single building, a building block is examined. In addition, in most previous studies, the effect of shade coverage of a maximum of two trees on the building has been investigated; while in this study, we examine the effect of shade coverage of 15 trees on the building block. None of the studies on optimizing the shade of trees on the facade of the building has used the meta-heuristic optimization methods and its combination with GIS. In this study, a hybrid model of GIS in a three-dimensional environment and ACO is used for maximizing the shade of trees on the facade and opening components of buildings, and minimizing the shade of trees on the rooftop.Materials and Methods Two types of data are required to perform the analysis; The building block properties, for example, dimensions, position, and size of the facade, rooftop, and opening components, and the tree properties (height and position). 3D GIS and ACO algorithms have been used to model tree shade coverage optimization. 3D GIS provides abilities for storing, analyzing, and creating 3D topologies, and ACO is used to summarize real-world conditions in a mathematical problem. GIS and trigonometric rules have been used to store geographical information and spatial topology. After storing the position, composition, and description information of 2D and 3D objects by topological data, Duffie and Beckman relations (2013) is used to extract the position of the shadow. Then, according to Church and Revelle, the Maximal Covering Location Problem (MCLP) is defined. For the following 3 reasons, ACO has been used for three-dimensional optimization; 1) The complex trigonometric rules in calculating the shadow coverage on buildings, 2) There is no deterministic solution for optimization problems because of nonlinear constraints including trigonometric functions, 3) The existence of continuous space around the building block that It is possible to place a tree in any position. The details of the steps are; 1) Define the set of possible locations for the tree based on the height, diameter of the canopy, and around space of the building block, 2) Use a method to place the first tree in all possible places around the building block during hot hours on certain days of the summer and calculate the maximum shade coverage on the building block based on the weight of the building components, 3) Remove the places that may be done in the tree canopy to prevent overlapping of tree canopies, 4) Repeat steps 2 and 3 to place the next trees in the possible places around the building block until the number of trees reaches the desired number of trees to create shade. Considering the infinite possible positions, a simplification step is required to limit the number of available positions. Therefore, the constant space is reduced to possible positions for locating Ni trees with two-meter spacing in the N-S and E-W directions. Further, the possible tree positions in front of the opening components are eliminated to make daylight available, have an outlook from the building, and comment through the doors. The minimum spacing of two meters between the trees and the building is set to prevent unnecessary shading on the rooftop.Results and Discussion MATLAB environment is used to optimize the shade coverage of trees using the ACO algorithm. For this purpose, properties of the buildings block such as length, width, height, are modeled in a struct in MATLAB. This struct has separate matrices for the north, east, south, and west views of the building block. Another matrix is also used to model the rooftop. Each element of the mentioned matrices is equal to 10× 10 cm from the surface of the building block and has a value of zero. To model the dimensions and location of doors and windows in each facade, another struct includes separate matrices for each facade is used. In these matrices, the amount of elements in the location of doors and windows is one. The characteristics of the sun in the study area are used, including azimuth and altitude of the sun on the studied days in 15-minute intervals from 9 to 15 hours.  The shadow is created on building components, by placing the tree in any of the possible locations, and movement of the sun. The elements of the matrices equivalent to the shaded building components change from zero to one. The sum of the values of the matrix elements determines the amount of shadow created by the tree on each component of the building. The sum of the point multiplication of the door/window matrix elements in the facade matrix elements determines the amount of shadow created on the doors/windows. The objective function is defined and the ACO algorithm is used to maximize the shadow coverage of trees on the facade, doors/windows, and minimize the shadow coverage on the rooftop. The results of the ACO show that the optimal shade coverage on the buildings block, which creates the most shade on the facade and doors and windows and the least shade on the roof, depends on the number of trees and the position of the doors and windows in buildings block. In general, as the number of trees increases, the amount of shadow created on the building block components increases.Conclusion The results of the ACO showed that for buildings, in the northern hemisphere, the trees in the north of the buildings have no effect on casting shadows on the components of the building. Due to the fact that in arid and tropical regions there are restrictions on planting trees, finding a suitable position for trees plays an important role in optimizing the shade coverage. Due to the high heat transfer through the doors and windows compared to the facade and rooftop, the higher weight is considered for these components in the objective function. Finding the optimal position of the trees depends a lot on the position of the doors and windows in the building to create the most shadow on these components. For a buildings block with the number and dimensions of buildings assumed in the research and according to the dimensions and position of doors and windows, planting a tree in one of the positions K10, K16, K22, or K28 creates the most optimal shade. These positions are 2 meters from south of the buildings and in the middle of two windows. On average, this tree provides 7.48, 9.22, and 0.85% shade respectively on the facade, doors /windows, and rooftop from 9 to 15 o'clock in four days studied. In the case of planting two trees, two positions from positions K10, K16, K22, or K28 still provide the optimal shade. On average, these two trees provide 13.88%, 18.64%, and 1.69% of shade respectively on the whole facade, doors /windows, and rooftop at 9:00 AM to 3:00 PM. In the case of three trees, positions K8, K18, and K22, in the case of four trees, positions K14, K20, K26, and K32, in the case of five trees, positions K8, K14, K20, K26, and K32 create the optimal shadow. Shading coverage in the case of three trees, is 21.07, 28.54, and 2.54%, respectively on the facade, doors/windows, and rooftop, in the case of four trees, is 24.96, 35.36 and 3.39% respectively on the façade, doors/windows, and rooftop and in the case of five trees is 33.26, 44.70 and 3.95% respectively on the facade, doors/windows, and rooftop. By planting five trees, more than 88% of the south façade and more than 90% of the south façade doors/windows of the building will be covered with shade. However, due to the goal of optimizing the shadow on the building and the greater weight of the doors and windows, the ACO has optimized the position of the trees in such a way that more surfaces of the doors and windows are exposed to the shadows. Due to the fact that in the case of five trees, 90% of the southern facade is in the shade of trees, in the case of six trees, in addition to the southern facade, the eastern and western facades are also considered for planting trees. So that the positions K8, K14, K20, and K30 are chosen in the distance of 2 meters from the south and the position of H2 is chosen in the distance f 2 meters from the west, and the position of H36 is chosen in the distance of 2 meters from the east. On average, these trees provide 33.95%, 42.29%, and 3.64% shade respectively on the facade, doors/windows, and rooftop. Manuscript profile
      • Open Access Article

        3 - Drought prediction and modeling by hybrid wavelet method and neural network algorithms
        Jahanbakhsh Mohammadi Alireza Vafaeinezhad Saeed Behzadi Hossein Aghamohammadi Amirhooman Hemmasi
        Background and Objective A drought crisis is a dry period of climate that can occur anywhere globally and with any climate. Although this crisis starts slowly, it can have a serious impact on health, agricultural products, the economy, energy, and the environment for a More
        Background and Objective A drought crisis is a dry period of climate that can occur anywhere globally and with any climate. Although this crisis starts slowly, it can have a serious impact on health, agricultural products, the economy, energy, and the environment for a long time to come. Drought severely threatens human livelihood and health and increases the risk of various diseases. Therefore, modeling and predicting drought is one of the most important and serious issues in the scientific community. In the past, mathematical and statistical models such as simple regression, Auto-regression (AR), moving average (MA), and ARIMA were used to model the drought. In recent years, machine learning methods and computational intelligence to model and predict drought have been of great interest to scientists. Computational intelligence algorithms that have been previously considered by scientists to model drought include multilayer perceptron neural network, RBF neural network, support vector machine, fuzzy, and ANFIS methods. In this research, the purpose of modeling and predicting drought is by using three neural network algorithms, including multilayer perceptron, RBF neural network, and generalized regression neural. The drought index used in this research is the standardized precipitation index (SPI). In this research, the wavelet technique in combination with artificial neural network algorithms for modeling and predicting drought in 10 synoptic stations in Iran (Abadan, Babolsar, Bandar Abbas, Kerman, Mashhad, Rasht, Saqez, Tehran, Tabriz, and Zahedan) have been used in different climates and with suitable spatial distribution throughout Iran.Materials and Methods This study, initially using monthly precipitation data between 1961 and 2017, SPI drought index in time scales of 3, 6, 12, 18, 24, and 48 months through programming in soft environment MATLAB software implemented. The results of this step were validated using the available scientific software MDM and Drinc. Then, prediction models were designed using the Markov chain. In this study, a total of six computational intelligence models, including three single models of multilayer perceptron neural network (MLP), radial basis function neural network (RBF), and generalized regression neural network (GRNN), and three hybrids wavelet models with these three models (WMLP-WRBF-WGRNN) have been used to model and predict the SPI index in 10 stations of this research. In implementing all these six models, the MATLAB software programming environment has been used. In this study, four types of discrete wavelets were used, including Daubechies, Symlets, Coiflets, and Biorthogonal. Due to the better performance of the Dobbies wavelet, this type of wavelet was used as a final option in the research. In the Daubechies wavelet used between levels 1 to 45, level 3 showed the best performance among different SPI time scales; therefore, the Daubechies level 3 wavelet was used in all hybrid models of this study. After training all six algorithms used, the evaluation criteria of coefficient of determination (R2) and root mean square error (RMSE) was used to measure the difference between actual and estimated values.Results and Discussion The results of this study showed that computational intelligence methods have high accuracy in modeling and predicting the SPI drought index. In the first stage, the results showed that the individual MLP, RBF, and GRNN models, if properly trained, have close results in modeling and predicting the SPI drought index. In the next step, it was observed that the wavelet technique would improve the modeling results. In using the wavelet technique in combination with three single models MLP, RBF, and GRNN, the choice of wavelet type is also more effective in modeling, so in this research, the first of the four types of discrete wavelets Daubechies, Symlet, Qoiflet, and Biorthogonal in combination with Three single models of this research were used and the results of these four types of wavelets showed the relative superiority of the Daubechies wavelet over the other three wavelets. In using the Daubechies wavelet, since this wavelet has 45 times and the choice of order was also effective in modeling, it was observed by testing the wavelet 45 times that the 3rd wavelet, in general, has higher accuracy in all time scales of SPI index, 3, 6, 12, 18, 24 and 48 months and also in all three algorithms MLP, RBF, and GRNN. Therefore, in this research, the third-order Daubechies wavelet was used in all three algorithms of this research, as well as in all time scales. The results showed that combining the wavelet technique with all three models MLP, RBF, and GRNN will improve the results. The research graphs showed that for the quarterly time scale, the values obtained from the single model prediction in MLP and RBF modeling have a somewhat one-month phase difference compared to the hybrid model, while in the GRNN model, this prediction difference is negligible. The modeling results for both single and hybrid modeling modes indicate that there is no phase difference between the single and hybrid modeling methods in time scales of 6, 12, 18, 24, and 48. For the 12- and 24-month time scales, the single GRNN model had more fluctuations and errors in SPI monthly modeling and forecasting, while the hybrid model in these two-time scales had much better behavior in monthly modeling and forecasting. Distribution diagrams of data related to observational SPI of Abadan station showed that the modeling results for single and hybrid modes in 3 and 6-month time scales are less accurate than other time scales and fit line separation, and its uncertainty is higher than others. However, in all neural network models and in all time scales, the hybrid method has shown more accuracy. The numerical results of the study indicate that in all SPIs and stations under study, the differential values of R2 are positive, which indicates higher values of R2 in the hybrid model than in single neural network modeling, which indicates an improvement in hybrid modeling compared to individual models. Also, the differential values of RMSE are negative in all studied models and stations, which indicates that the amount of RMSE in predicting hybrid models is lower than individual neural network models. In the research graphs, it can be seen that the amount of differences in RMSE and R2 indicates a greater difference in time scales 3 and 6 than the time scales 12, 18, 24, and 48, which somehow goes back to the nature of the data of these time scales. The most significant improvement in R2 and RMSE is from the 3-month low to the 48-month high, respectively.Conclusion From the findings of this study, it can be concluded that artificial neural network algorithms are efficient methods for modeling and predicting the SPI drought index. The use of wavelets in all three models of artificial neural networks will also improve the results. It can also be concluded that for better modeling of the SPI drought index, it is necessary to select the optimal wavelet type and order. From the results of this study, it can be concluded that the wavelet technique has a greater impact on the lower time scales, i.e., 3 and 6 months, than the higher scales, i.e., 24 and 48 months. Manuscript profile