Quantitative assessment of multi hazard risk (fire following earthquake) according to the method (ETA).Case: regions 1 and 6 Shiraz Municipality
Subject Areas :Leila Eshrati 1 * , Amir Mahmoodzadeh 2 , Masoud Taghvaei 3
1 - PhD Student of Geography and Urban Planning, Isfahan University, Natural Disasters Engineering, Shakhes Pajooh Institute
2 - Assistant Professor of Civil Engineering, Isfahan University, Natural Disasters Engineering, Shakhes Pajooh Institute
3 - Professor of Geography and Urban Planning, Isfahan University, Natural Disasters Engineering, Shakhes Pajooh Institute
Keywords: Risk, Quantitative assessment, multi hazard, event tree analysis, regions 1 and 6 Shiraz Municipality,
Abstract :
Multi hazards pose a serious threat to human life. It can cause considerable damages. The evaluation of the expected losses due to multi hazards requires a risk assessment. Multi hazards risk assessment allow the identification of the most endangered areas and suggest where further detailed studies have to be carried out.In this study, we aimed to assess the risks of multi hazard, Use of Quantitative event tree analysis in physical and human vulnerability assessment and risk mapping final (fire following earthquake). Analysis of data collected according to a combination of descriptive research and quantitative analysis. Quantitative risk assessment based on the Quantitative event tree analysis and HAZUS software. Domino effect in multi hazard vulnerability assessment based on event tree analysis. Two types of hazards will be assessed, namely earthquake, and fire following earthquake. The study estimated the direct physical vulnerability of buildings, Essential facilities And vulnerability to human (The casualties). The results show that the Study Area Most of the buildings in the study area (74%) has a low level of risk, "risk levels less than 10,000", 23.9% of the buildings in the study area has a moderate level of risk, "risk levels between 10,000 and 1,000,000" and finally (1.9%) buildings with an area of 639,660.47 square meters has a high-risk "risk levels than 1,000,000".
1- ارقامی، ش. یوسفی، م. عبدالملکی، ا. صادقیپور،ع. (1385): آتش سوزی ناشی از شبکه گازرسانی شهری هنگام بروز زلزله، همایش سراسری راهکارهای ارتقاء مدیریت بحران در حوادث و سوانح غیرمترقبه، زنجان.
2-امینی، ا. حبیب، ف. مجتهدزاده، :( 1389 ). برنامه ریزی کاربری زمین و چگونگی تاثیر آن در کاهش آسیب پذیری شهر در برابر زلزله، مجله علوم و تکنولوژی محیط زیست، دوره یازدهم، شماره سه، پاییز 89.،تهران.
3-بختیاری، س 1386 ).): بررسی حوادث حریق ناشی از زلزله در جهان و تهیه راهنمای حفاظت ساختمانها در برابر آتش با در نظر گرفتن خطرات و تخریبهای احتمالی ناشی از زلزله،انتشارات بنیاد مسکن انقلاب اسلامی (پژوهشکده سوانح طبیعی)، شماره دو، تهران.
4-زارع، م(1388) .: مبانی تحلیل خطر زمینلرزه، انتشارات پژوهشگاه بین المللی زلزله شناسی و مهندسی زلزله، شماره دهم، تهران.
5-مطالعات شهرداری شیراز (1383): مرحله اول بازنگری طرح تفصیلی مناطق شیراز منطقه یک و شش شهرداری شیراز، انتشارات معاونت شهرسازی ومعماری، مهندسان مشاور فرنهاد،جلد دوم، ویرایش نخست، شیراز.
6-مطالعات وزارت نیرو، (1384): مطالعات مرحله اول لرزه خیزی و لرزه زمین ساخت، انتشارات شرکت سهامی آب منطقهای فارس، جلد اول، ویرایش نخست، شیراز.
7-Davidson, R. A. (2009): “Modeling Post Earthquake Fire Ignitions Using Generalized Linear (mixed) Models.” J. Infrastructure. Syst., 15(4), 351–360.
8-European Commission (2011): Risk assessment and mapping guidelines for disaster management. Commission sat_ working paper, European Union, 121-127.
9-Ernest J. Henley and Hiromitsu Kumamoto(1992):, Probe ballistic Risk Assessment, IEEE Press (New York),87.
10-FEMA (2003): Multi-hazard loss estimation methodology: earthquake model. HAZUS-MH MR3. Technical manual, FEMA,79-512. URL http://www.fema.gov/plan/prevent/hazus/.
11-Greiving, S., Fleischhauer, M. & Luckenkotter, J. (2006) : A methodology for an integrated risk assessment of spatially relevant hazards. Journal of Environmental Planning and Management 49(1): 1-19.
12-Hewitt, K. & Burton, I. (1971): Hazardousness of a place: a regional ecology of damaging events. Toronto Press, Toronto and Bualo, 78.
13-Olfert, A., Greiving, S. & Batista, M. (2006): Regional multi-risk review, hazard weighting and spatial planning response to risk - results from European case studies.
URLhttp://arkisto.gtk.fi/sp/SP42/9_regio.pdf. Access 10 March 2010, 45-51.
14-Tate, E., Cutter, S. & Berry, M. (2010): Integrated multi hazard mapping. Environment and Planning B: Planning and Design 37: 646-663.
15-Varnes, D. J. (1984): Landslide hazard donation: a review of principles and practice. United Nations Educational, Scientist and Cultural Organization, Paris, France,35.
16-Marfai,M., Njagih,J.,(2002): Vulnerability analysis and risk assessment for seismic and flood hazard in Turialba city, Costarica, International Institute forGeo-information Sciences and Earth Observation (ITC),69.
17- Rin, A., and Xie, X. (2004): “The Simulation of Post-earthquake Fire Prone Area Based on GIS.” J. Fire Sci.,
22(5), 421–439.
18-Scawthorn, C., Yamada, Y., and Iemura, H. (1981): "A model for urban post earthquake fire hazard." Disasters, 5(2), pp. 125-132.
19-Scawthorn, C. (1987): Fire following earthquake: estimates of the conflagration risk to insured property in greater Los Angeles and San Francisco, All-Industry Research Advisory Council, Oak Brook, Ill,74.
20-Yue Li, M.ASCE; Aakash Ahuja; and Jamie E. Padgett, M.ASCE3, )2012):American Society of Civil Engineers. Journal of performance of constructed facilities ©ASCE / January/February 2012,142).
_||_