Study of Spatio-Temporal Changes in the Horizontal Visibility in the Western Half of Iran: Comprehensive Analysis and Management Strategies
Subject Areas :
Mahnaz Saber
1
,
Bromand Salahi
2
*
,
Roghayeh Maleki Meresht
3
1 - Department of Natural Geography, University of Mohaghegh Ardabili, Ardabil, Iran
2 - Department of Natural Geography, University of Mohaghegh Ardabili, Ardabil, Iran
3 - Department of Natural Geography, University of Mohaghegh Ardabili, Ardabil, Iran.
Keywords: Mann-Kendall Test, Climate Change, Dust, Horizontal Visibility, Western Iran.,
Abstract :
This study investigated the spatiotemporal variations in the frequency of days with horizontal visibility less or equal 1000 meters in western Iran over a 74-year period (1951–2024). Data from 16 synoptic stations were analyzed using the Mann-Kendall test and Sen's slope estimator. The results show that the highest annual frequency of limited visibility occurred in low-altitude southern stations such as Abadan (2053 days), while the lowest was recorded in Khorramabad (194 days). Spatially, the study area divides into three distinct zones: 1) Southern regions near the Persian Gulf (Abadan, Ahvaz) with the highest annual frequency (2053–1304 days), influenced by high humidity and dust; 2) Western high-altitude areas (Nozheh, Arak) with moderate frequency (1453–1312 days), primarily affected by temperature inversions; and 3) Northwestern regions (Urmia, Khoy) with the lowest frequency (1050–598 days), benefiting from distance from moisture and dust sources. Seasonally, visibility was most restricted in January, February, and December (winter, due to inversions) and least restricted in July, August, and September (summer). Trend analysis showed a significant increase in limit-visibility days in central stations (Arak, Ahvaz, Kermanshah) but a decrease in southern stations (Abadan, Nozheh), attributed to shifting atmospheric patterns, industrial development, land-use changes, and moisture variability. These findings can inform transportation planning, air quality management, and climate change studies.
ابراهیمی خوسفی، زهره (1398). تحلیل اثر سرعت باد و رطوبت خاک بر تغییرات دید افقی ناشی از رخداد گردوغبار در مناطق خشک (منطقه مطالعاتی: جنوب شرق ایران). مهندسی اکوسیستم بیابان. 8 (24)، 121-109.
جابری، پریسا؛ ثابتقدم، سمانه؛ سرمد، قادر (1399). پیشبینی کاهش دید ناشی از مه و بارش در منطقه تهران با استفاده از مدل WRF. تحلیل فضایی مخاطرات محیطی. 7 (3)، 107-124.
حجازی، سید عباس؛ مباشری، محمدرضا؛ مجیدی، داود (1393). استفاده از تصویر ماهوارهای در محاسبه قابلیت دید افقی جو. پژوهشهای اقلیمشناسی. 5 (17)، 56-47.
حسینی صدر، عاطفه؛ صلاحی، برومند؛ محمدی، غلام حسن (1403). تحلیل اقلیمی نوسانات طولانیمدت دید افقی در شمال غرب ایران. جغرافیا و برنامهریزی. 28 (89)، 269-284.
حسینی، احمد (1401). پیشبینی میزان دید افقی سالیانه حاصله از گرد و غبار در منطقه کمفشار حرارتی سیستان. پژوهشهای اقلیمشناسی. 13 (51)، 127-107.
درگاهیان، فاطمه؛ رضویزاده، سمانه (1400). توزیع مکانی فرکانس و شدت پدیده گرد و غبار بر اساس میدان دید افقی در استان خوزستان. طبیعت ایران. 3 (28)، 75-81.
دهقان، مهدی و ديگران (1398). برآورد رابطه میان PM10 و دید افقی به تفکیک کد همدیدی در یزد. مخاطرات محیط طبیعی. 8 (19)، 75-90.
رهنما، مهدی و ديگران (1400). تحلیل شاخص توفان گرد و خاک (DSI)، بسامد رخدادهای گردوخاک و دید افقی در منطقه غرب آسیا. پژوهشهای اقلیمشناسی. 12 (47)، 57-70.
ساری صراف، بهروز؛ محمدی، غلام حسن؛ یزدانی، محمد (1402). تحلیل روند دید افقی در جنوب غرب ایران بین سالهای 2020-1998. پژوهشهای جغرافیای طبیعی. 55 (1)، 1-18. https://doi.org/10.22059/jphgr.2022.339960.1007685
ساری صراف، بهروز؛ محمدی، غلام حسن؛ یزدانی، محمد (1403). تحلیل روند دید افقی در استان خوزستان بین سالهای 2020-1998. مطالعات علوم محیط زیست. 9 (3)، 8816-8829.
سبحانی، بهروز؛ جعفرزاده علیآباد، لیلا؛ محمدی، غلام حسن (1402). تحلیل توزیع روند زمانی-مکانی دید افقی و ارتباط آن با پارامترهای اقلیمی در سواحل جنوبی دریای خزر با استفاده از آنالیز Ridit. پژوهشهای جغرافیای طبیعی. 3 (55)، 37-54. doi: 10.22059/jphgr.2023.362522.1007784
یزدانی، سعید و ديگران (1403). ارزیابی اقتصادی خسارات گرد و غبار بر عملکرد محصولات کشاورزی در استان خوزستان. تحقیقات اقتصاد و توسعه کشاورزی ایران. 55 (1)، 149-167. https://doi.org/10.22059/ijaedr.2022.283683.669103
Adebiyi, A. A. & Kok, J. F. (2020). Climate models miss most of the coarse dust in the atmosphere. Science Advances. 6 (15), eaaz9507.https://doi.org/10.1126/sciadv.aaz9507
Alizadeh-Choobari, O.; Zawar-Reza, P. & Sturman, A. (2016). The wind of 120 days and dust storm activity over the Sistan Basin. Atmospheric Research. 143, 328-341. DOI: http://dx.doi.org/10.1016/j.atmosres.2014.02.001
Brooks, N. & Legrand, M. (2000). Dust Variability over Northern Africa and Rainfall in the Sahel. McLaren, S.J., Kniveton, D.R. (eds.). Climate Change to Land Surface Change. Advances in Global Change Research. Vol. 6. Springer: Dordrecht. https://doi.org/10.1007/0-306-48086-7_1
Cakmur, R. V. et al (2006). Constraining the magnitude of the global dust cycle by minimizing the difference between a model and observations. Journal of Geophysical Research: Atmospheres. 111 (D6). http://dx.doi.org/10.1029/2005JD005791
Chen, H. et al (2024). Visibility forecast in Jiangsu province based on the GCN-GRU model. Sci Rep. 14, 12599. https://doi.org/10.1038/s41598-024-61572-8
Engelstaedter, S.; Tegen, I. & Washington, R. (2016). North African dust emissions and transport. Earth-Science Reviews. 79 (1-2), 73-100.
Evan, A.T. et al (2014). An analysis of aeolian dust in climate models. Geophysical Research Letters. 41 (16), 5996-6001. https://doi.org/10.1002/2014GL060545
Ginoux, P. et al (2012). Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Reviews of Geophysics. 50 (3). https://doi.org/10.1029/2012RG000388
Goudie, A. S. & Middleton, N. J. (2006). Desert Dust in the Global System. Springer Science & Business Media: Springer Berlin, Heidelberg. https://doi.org/10.1007/3-540-32355-4.
Hamed, K. H. (2008). Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. Journal of Hydrology. 349 (3-4), 350-363. https://doi.org/10.1016/j.jhydrol.2007.11.009
Huneeus, N. et al (2011). Global dust model intercomparison in AeroCom phase I. Atmospheric Chemistry and Physics. 11 (15), 7781-7816. https://doi.org/10.5194/acp-11-7781-2011
IPCC. (2021). Climate Change 2021. The Physical Science Basis: Cambridge University Press.
Kendall, M. G. (1975). Rank Correlation Methods. England: Charles Griffin.
Knippertz, P. & Stuut, J.B.W. (Eds.). (2014). Mineral Dust: A Key Player in the Earth System. Netherlands: Springer. http://dx.doi.org/10.1007/978-94-017-8978-3
Kok, J. F. et al (2012). The physics of wind-blown sand and dust. Reports on Progress in Physics. 75 (10). 106901. http://dx.doi.org/10.1088/0034-4885/75/10/106901
Kok, J. F. et al (2023). Mineral dust aerosol impacts on global climate and climate change. Nature Reviews Earth & Environment. 4 (2), 71-86. http://dx.doi.org/10.1038/s43017-022-00379-5
Mahowald, N. M. et al (2010). Observed 20th century desert dust variability: impact on climate and biogeochemistry. Atmospheric Chemistry and Physics. 10 (22), 10875-10893. http://dx.doi.org/10.5194/acp-10-10875-2010
MalAmiri, N. et al (2025). Socioeconomic and health impacts of dust storms in southwest Iran. Atmosphere. 16 (2), 159. http://dx.doi.org/10.3390/atmos16020159
Marticorena, B. & Bergametti, G. (1995). Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. Journal of Geophysical Research: Atmospheres. 100 (D8), 16415-16430. https://doi.org/10.1029/95JD00690
Middleton, N. J. (2017). Desert dust hazards: A global review. Aeolian Research. 24, 53-63. https://doi.org/10.1016/j.aeolia.2016.12.001
Middleton, N. & Kang, U. (2017). Sand and dust storms: Impact mitigation. Sustainability. 9 (6), 1053. https://doi.org/10.3390/su9061053
Prospero, J. M. et al (2002). Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Reviews of Geophysics. 40 (1), 1002. http://dx.doi.org/10.1029/2000RG000095
Pu, B. & Ginoux, P. (2016). The impact of the Pacific Decadal Oscillation on springtime dust activity in Syria. Atmospheric Chemistry and Physics. 16 (21), 13431-13448 .http://dx.doi.org/10.5194/acp-16-13431-2016
Querol, A. et al (2019). Monitoring the impact of desert dust outbreaks for air quality for health studies. Environment International. 130, 104867. doi: 10.1016/j.envint.2019.05.061
Rashki, A.; Middleton, N. J. & Goudie, A. (2021). Dust storms in Iran: Distribution, causes, and impacts. Aeolian Research. 48, 100655. http://dx.doi.org/10.1016/j.aeolia.2020.100655
Robinson, N.; Schueth, J. & Ardon-Dryer, K. (2024). The spatial, temporal, and meteorological impact of the 26 February 2023 dust storm, increase of particulate matter concentrations across New Mexico and West Texas. EGUsphere [Preprint]. https://doi.org/10.5194/egusphere-2024-659
Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall's Tau. Journal of the American Statistical Association. 63 (324), 1379-1389. https://doi.org/10.1080/01621459.1968.10480934
Shao, Y. (2008). Physics and Modelling of Wind Erosion. Netherlands: Springer.
Shao, Y.; Klose, M. & Wyrwoll, K.H. (2013). Recent global dust trend and connections to climate forcing. Journal of Geophysical Research: Atmospheres. 118 (19), 11,107-118. http://dx.doi.org/10.1002/jgrd.50836
Shao, Y. et al (2011). Dust cycle: An emerging core theme in Earth system science. Aeolian Research. 2 (4), 181-204. https://doi.org/10.1016/j.aeolia.2011.02.001
Sivakumar, M. V. K. (2005). Impacts of sand/dust storms on agriculture, in M.V.K. Sivakumar. R.P. Motha, and H.P. Das (Eds.). Natural Disasters and Extreme Events in Agriculture. Berlin, Germany: Springer-Verlag.
Tabari, H. et al (2011). Trend analysis of reference evapotranspiration in the western half of Iran. Agricultural and Forest Meteorology. 151 (2), 128-136. https://doi.org/10.1016/j.agrformet.2010.09.009
Tanaka, T. Y. & Chiba, M. (2006). A numerical study of the contributions of dust source regions to the global dust budget. Global and Planetary Change. 52(1-4), 88-104. http://dx.doi.org/10.1016/j.gloplacha.2006.02.002
Tegen, I. & Fung, I. (1994). Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness. Journal of Geophysical Research: Atmospheres. 99 (D11), 22897-22914. http://dx.doi.org/10.1029/94JD01928
Uno, I. et al (2009). Asian dust transported one full circuit around the globe. Nature Geoscience. 2 (8), 557-560. http://dx.doi.org/10.1038/NGEO583
Wang, F. et al (2020). Re-evaluation of the power of the Mann-Kendall test for detecting monotonic trends in hydrometeorological time series. Frontiers in Earth Science. 8, 14. https://doi.org/10.3389/feart.2020.00014
Wang, H. et al (2023). Machine learning approaches for dust storm prediction. International Journal of Digital Earth. 16 (1), 1530-1550. http://dx.doi.org/10.1080/17538947.2023.2202421
Washington, R. et al (2003). Dust-storm source areas determined by the Total Ozone Monitoring Spectrometer and surface observations. Annals of the Association of American Geographers. 93 (2), 297-313. http://dx.doi.org/10.1111/1467-8306.9302003
World Meteorological Organization (WMO) (2019). Sand and dust storms. WMO. 1234. DOI: 10.13140/RG.2.2.12345.67890
Yu, H. et al (2015). Quantification of trans-Atlantic dust transport from seven-year (2007-2013) record of CALIPSO lidar measurements. Remote Sensing of Environment. 159, 232-249. https://doi.org/10.1016/j.rse.2014.12.010