Correlation of Ramalina farinacea Chemotype with Ecological Factors in Iran Using LC-ESI-MS/MS
Subject Areas : Phytochemistry
Maryam Sharifi
1
*
,
Iraj Mehregan
2
*
,
Mohammad Sohrabi
3
,
kambiz larijani
4
,
HARRIE SIPMAN
5
1 -
2 - Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 - Environmental and Industrial Biotechnology Research Group, Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
4 - Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
5 - Botanic Garden and Botanical Museum Berlin-Dahlem, Freie Universität, Berlin, Germany.
Keywords: Altitude, Chemical profile, Chemotype, liquid chromatography-tandem mass spectrometry, Slope direction, Ramalina farinacea ,
Abstract :
This study, identified specific phytochemical properties associated with five distinct ecotypes of Ramalina farinacea from Iran (including Kordkooy, Shahrud, Gorgan, Farim, and Galugah) to determine intraspecific chemotype diversity. In several steps, qualitative differences in chemical profiles were investigated using liquid chromatography-tandem mass spectrometry (LC-ESI-MS/MS). Based on LC-ESI-MS/MS results, the following chemicals were identified: Metabolites (1) Atranol, (2) Divaric acid, (3) Evernic acid, (4) Ramalinaic acid, (5) Squamatic acid, (6) Sekikaic acid, (7) 4’-0-Methyl norsekikaic acid, (8) Glomellonic acid, (9) Conprotocetraric acid, (10) Usnic acid, (11) Nephrosterinic acid, (12) Dihydroxyoctadecenoic acid, (13) Hypoconstictic acid and Two unknown substances. Statistical analyses using Ward's method in SPSS were performed based on quantitative and qualitative traits. The dendrogram revealed two main clusters. The arrays of Farim and Galugah were closely grouped in one subcluster, while Gorgan formed another subcluster. In a separate cluster, Shahrud and Kordkooy showed proximity. Correlation coefficients between the studied traits showed a positive correlation of slope direction, altitude, humidity, maximum, and mean temperature with the chemotypes. This could explain the observed differences in the chemical profiles of the lichen ecotypes, these findings may confirm the observed variations in the chemical profiles of the lichen ecotypes.
Albornoz, L., Torres-Benítez, A., Moreno-Palacios, M., Simirgiotis, M. J., Montoya-Serrano, S. A., Sepulveda, B., Stashenko, E., García-Beltrán, O., and Areche, C. (2022). Phylogenetic studies and metabolite analysis of Sticta species from Colombia and Chile by Ultra-High Performance Liquid Chromatography-High Resolution-Q-Orbitrap-Mass Spectrometry. Metabolites, 12(2): 156. https://doi.org/10.3390/metabo12020156
Asahina, Y., and Fuzikawa, F. (1932). Untersuchungen über flechtenstoffe, XI. Mitteil.: Über die konstitution der obtusatsäure. Berichte Der Deutschen Chemischen Gesellschaft (A and B Series), 65(4): 580–583. https://doi.org/10.1002/cber.19320650415
Bjerke, J. W., Zielke, M., and Solheim, B. (2003). Long‐term impacts of simulated climatic change on secondary metabolism, thallus structure and nitrogen fixation activity in two cyanolichens from the Arctic. New Phytologist, 159(2): 361–367. https://doi.org/10.1046/j.1469-8137.2003.00812.x
Bjerke, W., Elvebakk, A., Domínguez, E., and Dahlback, A. (2005). Seasonal trends in usnic acid concentrations of Arctic, Alpine and Patagonian populations of the lichen Flavocetraria nivalis. Phytochemistry, 66: 337–344. https://doi.org/10.1016/j.phytochem.2004.12.007
Boustie, J., and Grube, M. (2005). Lichens—a promising source of bioactive secondary metabolites. Plant Genetic Resources, 3(2): 273–287. https://doi.org/10.1079/PGR200572
Bowler, P. A., and Smith, C. W. (1976). Ramalina farinacea in Hawaii. Bryologist, 79: 499–501.
Chi, H. B. L., Linh, N. T. T., Hanh, L. H., Linh, P. H., Tuyen, P. N. K., Phat, N. T., and Tuyet, N. T. A. (2021). Triterpenoids and steroids from the lichen Ramalina peruviana Arch. Vietnam Journal of Chemistry, 59(4): 451–456. https://doi.org/10.1002/vjch.202000174
Culberson, C. F., LaGreca, S., Johnson, A., and Culberson, W. L. (1999). Trivaric acid, a new tridepside in the Ramalina americana chemotype complex (Lichenized Ascomycota: Ramalinaceae). The Bryologist, 102(4): 595. https://doi.org/10.2307/3244249
Culberson, W. L. (1967). Analysis of chemical and morphological variation in the Ramalina siliquosa Species Complex. Brittonia, 19(4): 333. https://doi.org/10.2307/2805533
Culberson, W. L., and Culberson, C. F. (1976). Ramalina asahinae, a new boninic acid-producing species from Mexico. The Journal of Japanese Botany, 51: 374–376.
Culberson, W. L., Culberson, C. F., and Johnson, A. (1993). Speciation in Lichens of the Ramalina siliquosa Complex (Ascomycotina, Ramalinaceae): Gene Flow and Reproductive Isolation. American Journal of Botany, 80(12): 1472. https://doi.org/10.2307/2445677
Elix, J. A. (2014). A catalogue of standardized chromatographic data and biosynthetic relationships for lichen substances (3rd ed). Research School of Chemistry, Australian National University.
Fahselt, D., BeGora, M. (2001). Usnic acid and atranorin concentrations in lichens in relation to bands of UV irradiance. Bryologist, 104: 134–140.
Gasparyan, A., Sipman, H. J. M., and Lücking, R. (2017). Ramalina europaea and R. labiosorediata, two new species of the R. pollinaria group (Ascomycota: Ramalinaceae), and new typifications for Lichen pollinarius and L. squarrosus. Lichenologist, 49(4): 301–319. https://doi.org/10.1017/S0024282917000226
Gasparyan, A., and Sipman, H. J. M. (2016). The epiphytic lichenized fungi in Armenia: diversity and conservation. Phytotaxa, 281(1): 1. https://doi.org/10.11646/phytotaxa.281.1.1
Gazo, S. M. T., Santiago, K. A. A., Tjitrosoedirjo, S. S., and Dela Cruz, T. E. E. (2019). Antimicrobial and herbicidal activities of the fruticose lichen Ramalina from Guimaras Island, Philippines. Biotropia, 26(1): 23–32.
González, A., Barrera, J., Pérez, E., and Padrón, C. (1992). Chemical Constituents of the Lichen Ramalina hierrensis. Planta Medica, 58(02): 214–218. https://doi.org/10.1055/s-2006-961433
Hirayama, T., Fujikawa, F., Kasahara, T., Otsuka, M., Nishida, N., and Mizuno, D. (1980). Anti-tumor activities of some lichen products and their degradation products. Yakugaku Zasshi, 100: 755–759.
Huneck, S., and Yoshimura, I. (1996). Identification of Lichen Substances. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-85243-5 Ingólfsdóttir, K. (2002). Usnic acid. Phytochemistry, 61(7): 729–736. https://doi.org/10.1016/S0031-9422(02)00383-7
Komaty, S., Letertre, M., Duong Dang, H., Jungnickel, H., Laux, P., Luch, A., Carrié, D., Conanec, O. M., Bazureau, J. P., Gauffre, F., Tomasi, S., and Paquin, L. (2016). Sample preparation for an optimized extraction of localized metabolites in lichens: Application to Pseudevernia furfuracea. Talanta, 150: 525–30. https://doi.org/10.1016/j.talanta.2015.12.081
Koopaie, M., Karimi, H., Sohrabi, M., and Norouzi, H. (2023). Cytotoxic, anti-proliferative, and apoptotic evaluation of Ramalina sinensis (Ascomycota, Lecanoromycetes), lichenized fungus on oral squamous cell carcinoma cell line; in-vitro study. BMC Complementary Medicine and Therapies. 23(1): 296. http://dx.doi.org/10.1186/s12906-023-04118-1
Krog, H., and Osthagen, H. (1980). The genus Ramalina in the Canary Island. Norwegian Journal of Botany, 27: 255–296.
Kumar, T. K., Siva, B., Anand, A., Anusha, K., Mohabe, S., Reddy, A. M., Le Devehat, F., Tiwari, A. K., Boustie, J., and Babu, K. S. (2022). Comprehensive Lichenometabolomic Exploration of Ramalina conduplicans Vain Using UPLC-Q-ToF-MS/MS: An Identification of Free Radical Scavenging and Anti-Hyperglycemic Constituents. Molecules, 27(19): 6720. ttps://doi.org/10.3390/molecules27196720
Lauterwein, M., Oethinger, M., Belsner, K., Peters, T., and Marre, R. (1995). In vitro activities of the lichen secondary metabolites vulpinic acid, (+)-usnic acid, and (-)-usnic acid against aerobic and anaerobic microorganisms. Antimicrobial Agents and Chemotherapy, 39(11): 2541–2543. https://doi.org/10.1128/AAC.39.11.2541
Lee, S. G., Koh, H. Y., Oh, H., Han, S. J., Kim, I.-C., Lee, H. K., and Yim, J. H. (2010). Human dermal fibroblast proliferation activity of usimine-C from Antarctic lichen Ramalina terebrata. Biotechnology Letters, 32(4): 471–475. https://doi.org/10.1007/s10529-009-0191-2
Lohézic-Le Dévéhat, F., Tomasi, S., Elix, J. A., Bernard, A., Rouaud, I., Uriac, P., and Boustie, J. (2007). Stictic acid derivatives from the lichen Usnea articulata and their antioxidant activities. Journal of Natural Products, 70(7): 1218–1220. https://doi.org/10.1021/np070145k
Molho, D., Bodo, B., Culberson, W. L., and Culberson, C. F. (1981). A chemically distinctive new Ramalina from Fiji. The Bryologist, 84(3): 396. https://doi.org/10.2307/3242860
Molho, L., Bodo, B., and Molho, D. (1979). L’acide6 O-méthyl-4′ norsékikaïque, nouveau meta-depside isolé, d’un lichen du genre Ramalina. Phytochemistry, 18(12): 2049–2051. https://doi.org/10.1016/S0031-9422(00)82741-7
Moreira, A., Braz-Filho, R., Mussi-Dias, V., and Vieira, I. (2015). Chemistry and biological activity of Ramalina lichenized fungi. Molecules, 20(5): 8952–8987. https://doi.org/10.3390/molecules20058952
Musharraf, S. G., Kanwal, N., Thadhani, V. M., and Choudhary, M. I. (2015). Rapid identification of lichen compounds based on the structure–fragmentation relationship using ESI-MS/MS analysis. Analytical Methods, 7(15): 6066–6076. https://doi.org/10.1039/C5AY01091H
Oksanen, I. (2006). Ecological and biotechnological aspects of lichens. Applied Microbiology and Biotechnology, 73(4): 723–734. https://doi.org/10.1007/s00253-006-0611-3
Olivier-Jimenez, D., Chollet-Krugler, M., Rondeau, D., Beniddir, M. A., Ferron, S., Delhaye, T., Allard, P.-M., Wolfender, J.-L., Sipman, H. J. M., Lücking, R., Boustie, J., and Le Pogam, P. (2019). A database of high-resolution MS/MS spectra for lichen metabolites. Scientific Data, 6(1): 294. https://doi.org/10.1038/s41597-019-0305-1
Parrot, D., Jan, S., Baert, N., Guyot, S., and Tomasi, S. (2013). Comparative metabolite profiling and chemical study of Ramalina Siliquosa complex using LC-ESI-MS/MS approach. Phytochemistry, 89: 114–24. https://doi.org/10.1016/j.phytochem.2013.02.002
Paudel, B., Bhattarai, H. D., Koh, H. Y., Lee, S. G., Han, S. J., Lee, H. K., Oh, H., Shin, H. W., and Yim, J. H. (2011). Ramalina novel nontoxic antioxidant compound from the Antarctic lichen Ramalina terebrata. Phytomedicine, 18(14): 1285–1290. https://doi.org/10.1016/j.phymed.2011.06.007
Piercey-Normore, M. (2003). A field survey of the genus Cladonia (Ascomycotina) in Manitoba, Canada. Mycotaxon, 86: 233–247.
Piercey-Normore, M. (2007). The genus Cladonia in Manitoba: exploring taxonomic trends with secondary metabolites. Mycotaxon, 101: 189–199.
Rundel, P. W. (1978). The ecological role of secondary lichen substances. Biochemical Systematics and Ecology, 6(3): 157–170. https://doi.org/10.1016/0305-1978(78)90002-9
Sérusiaux, E., van den Boom, P., and Ertz, D. (2010). A two-gene phylogeny shows the lichen genus Niebla (Lecanorales) is endemic to the New World and does not occur in Macaronesia nor in the Mediterranean basin. Fungal Biology, 114(7): 528–537. https://doi.org/10.1016/j.funbio.2010.04.002
Sheard, J. W. (1977). Paleogeography, chemistry and taxonomy of the lichenized Ascomycetes Dimelaena and Thamnolia. Bryologist, 80: 100–118.
Shukla, V., Negi, S., Rawat, M. S. M., Pant, G., and Nagatsu, A. (2004). Chemical study of Ramalina africana (Ramalinaceae) from the Garhwal Himalayas. Biochemical Systematics and Ecology, 32(4): 449–453. https://doi.org/10.1016/j.bse.2003.08.010
Shukla, V., Patel, D. K., Bajpai, R., Semwal, M., and Upreti, D. K. (2016). Ecological implication of variation in the secondary metabolites in Parmelioid lichens with respect to altitude. Environmental Science and Pollution Research, 23(2): 1391–1397. https://doi.org/10.1007/s11356-015-5311-z
Spjut, R., Simon, A., Guissard, M., Magain, N., and Sérusiaux, E. (2020). The fruticose genera in the Ramalinaceae (Ascomycota, Lecanoromycetes): their diversity and evolutionary history. Mycokeys, 73: 1–68. https://doi.org/10.3897/mycokeys.73.47287
Stevens, G. N. (1983). Tropical-subtropical Ramalinae in the Ramalina farinacea complex. The Lichenologist, 15(3): 213–229. https://doi.org/10.1017/S0024282983000365
Tay, T., Türk, A. Ö., Yılmaz, M., Türk, H., and Kıvanç, M. (2004). Evaluation of the antimicrobial activity of the acetone extract of the lichen Ramalina farinacea and its (+)-usnic acid, norstictic acid, and protocetraric acid constituents. Zeitschrift Für Naturforschung C, 59(5–6): 384–388. https://doi.org/10.1515/znc-2004-5-617
Unal, D., Senkardesler, A., and Sukatar, A. (2008). Abscisic acid and polyamine contents in the lichens Pseudevernia furfuracea and Ramalina farinacea. Russian Journal of Plant Physiology, 55(1): 115–118. https://doi.org/10.1134/S1021443708010147
Walker, J. R. L., and Lintott, E. A. (1997). A phytochemical register of New Zealand lichens. New Zealand Journal of Botany, 35(3): 369–384. https://doi.org/10.1080/0028825X.1997.10410162
Wijayawardene, N., Hyde, K., Dai, D., Sánchez-García, M., Goto, B., Saxena, R., Erdoğdu, M., Selçuk, F., Rajeshkumar, K., Aptroot, A., Błaszkowski, J., Boonyuen, N., da Silva, G., de Souza, F., Dong, W., Ertz, D., Haelewaters, D., Jones, E., Karunarathna, S., … and Thines, M. (2022). Outline of fungi and fungus-like taxa – 2021. Mycosphere, 13(1): 53–453. https://doi.org/10.5943/mycosphere/13/1/2
Yim, J. H., Kim, I. C., Lee, S. G., Kim, D. K., Han, S. J., Lee, H. S., Seok, K. H., Kim, S. J., Kim, T. K., and Kang, P. S. (2011). Pharmaceutical composition for the treatment of inflammatory disease or immune disease containing Ramalina. WO 2,011,152,671 A2.
Yim, J. H., Lee, H. K., Bhattarai, H. D., Babita, P., Kim, I. C., Hong, S. G., Kim, D. K., Lee, Y. K., Gu, S., and Oh, H. C. (2010). Antioxidant activities of Ramalina isolated from Ramalina terebrata extracts. WO 2,010,053,327 A2.