Fuzzy intelligent forecasting approaches and tools in the field of digital currencies: A systematic review
Subject Areas :
Financial Economics
Davood ZareKhaneghah
1
,
Ali Mohammadi
2
,
Mohammad Imani Barandagh
3
,
Amir Najafi
4
1 - Department of Accounting, Zanjan Branch, Islamic Azad University, Zanjan, Iran
2 - Department of accounting, Zanjan Branch, Islamic Azad University, Zanjan, Iran
3 - Department of Accounting, Zanjan Branch, Islamic Azad University, Zanjan, Iran.
4 - Department of Industrial Engineering, Zanjan Branch, Islamic Azad University, Zanjan, Iran
Received: 2023-12-16
Accepted : 2024-02-03
Published : 2024-03-20
Keywords:
Keywords: Forecasting,
G21,
fuzzy systems,
Digital currency,
P34,
fuzzy neural networks,
hybrid models. JEL Classification: G11,
Abstract :
Abstract
Digital currency, is one of the most important factors in the success of organizations that will be present in the arena of global competition. In the present review, the most important theories of digital currency forecasting based on fuzzy hybrid models and artificial neural networks have been systematically investigated. These models mainly focus on supervised methods for measuring hybrid models. Also, basic concepts about the history of hybrid models from the first proposed models to current developed models, their combinations and architectural capabilities, data processing and measurement methods of these intelligent models are presented so that evolution This category of intelligent systems is analyzed. Finally, the features of prominent (leading) models and their applications in digital currency forecasting are presented. The results show that fuzzy neural network models and their derivatives are efficient in predicting digital currency with very high accuracy and with good justification capability that is used in a wide range of economic and scientific fields.
References:
فهرست منابع
محبوبی, هادی, مومنی وصالیان, هوشنگ, دامن کشیده, مرجان, نصابیان, شهریار. تاثیر پویایی مدیریت ذخایر ارزی و ساختار مداخلات بانک مرکزی بر تثبیت بازار ارز با بکارگیری نظریه گیرتون و روپر. اقتصاد مالی financial Economics, 1401; 16(58): 233-256. doi: 10.30495/fed.2022.691509
شیخ, عباسعلی, سعیدی, پرویز, عباسی, ابراهیم, نادریان, آرش. ارائه و تحلیل مدل تامین مالی سبز شرکت ها از طریق صنعت بانکداری در راستای استقرار محیط زیست پایدار. اقتصاد مالی financial Economics, 1401; 16(58): 215-232. doi: 10.30495/fed.2022.691508
حسنوند, علی, کریمی, محمد شریف, فلاحتی, علی, خانزادی, آزاد. اثر پیچیدگی اقتصادی بر نابرابری درآمدی در کشورهای منتخب در حال توسعه؛ رویکرد پانل دینامیک. اقتصاد مالی financial Economics, 1401; 16(58): 193-214. doi: 10.30495/fed.2022.691507
_||_
Pedrycz, W. (1993). Fuzzy neural networks and neurocomputations, Fuzzy Sets and Systems, 56 (1),1–28.
Dayhoff, J.E., DeLeo, J. M. (2001). Artificial neural networks: opening the black box, Cancer: Interdisciplinary International Journal of the American Cancer Society, 91 (S8), 1615–1635.
Zadeh, L.A. (1976). A fuzzy-algorithmic approach to the definition of complex or imprecise concepts, in: Systems Theory in the Social Sciences, Springer, 202–282.
Lin C.-T., C. G. Lee, C.-T. Lin, C. Lin, Neural fuzzy systems: a neuro-fuzzy synergism to intelligent systems, Vol. 205, Prentice hall PTR Upper Saddle River NJ, 1996.
Buckley J. J., Hayashi, Y. (1994). Fuzzy neural networks: A survey, Fuzzy sets and systems 66 (1) 1–13.
Pedrycz, W. (1991). Neurocomputations in relational systems, IEEE Transactions on Pattern Analysis & Machine Intelligence 13 (3) 289–297.
Nelles, O. (2013). Nonlinear system identification: from classical approaches to neural networks and fuzzy models, Springer Science & Business Media.
Feipeng Da. (2000). Decentralized sliding mode adaptive controller design based on fuzzy neural networks for interconnected uncertain nonlinear systems, IEEE Transactions on Neural Networks 11 (6) 1471–1480.
Vieira, J., Dias, Mota, F.M.A. (2004). Neuro-fuzzy systems: a survey, in: 5th WSEAS NNA international conference on neural networks and applications, Udine, Italia, 1–6.
Kar, S. Das, P. K. Ghosh, Applications of neuro fuzzy systems: A brief review and future outline, Applied Soft Computing 15 (2014) 243–259.
Takagi, H. (1990). Fusion technology of fuzzy theory and neural networks-survey and future directions, in: Proceedings 1st International Conference on Fuzzy Logic & Neural Networks, 13–26.
Mitra, S. Hayashi, Y. (2000). Neuro-fuzzy rule generation: survey in soft computing framework, IEEE transactions on neural networks 11 (3) 748–768.
M¨oller, B. Beer, M. (2013). Fuzzy randomness: uncertainty in civil engineering and computational mechanics, Springer Science & Business Media, 2013.
Kwan, H. K. Cai, Y. (1994). A fuzzy neural network and its application to pattern recognition, IEEE transactions on Fuzzy Systems 2 (3) 185–193. arXiv:1805.03138.
Knezevic, M. Cvetkovska, M. Han´ak, T. Braganca, L. (2018). Soltesz, Artificial neural networks and fuzzy neural networks for solving civil engineering problems, Complexity.
Sayaydeh, O. N. Mohammed, M. F. Lim, C. P. (2018). A survey of fuzzy min max neural networks for pattern classification: Variants and applications, IEEE Transactions on Fuzzy Systems.
Pal, S. K. Mitra, S. (1999). Neuro-fuzzy pattern recognition: methods in soft computing, John Wiley & Sons, Inc.
Mishra, S. Sahoo, S. Mishra, B. K. (2019). Neuro-fuzzy models and applications, in: Emerging Trends and Applications in Cognitive Computing, IGI Global, 78–98.
Shihabudheen, K. Pillai, G. (2018). Recent advances in neuro-fuzzy system: A survey, Knowledge-Based Systems 152,136–162.
krjanc, I. Iglesias, J. Sanchis, A. Leite, D. Lughofer, E. Gomide, F. (2019). Evolving fuzzy and neuro-fuzzy approaches in clustering, regression, identification, and classification: A survey, Information Sciencesdoi: https://doi.org/10.1016/j.ins.2019.03.060.
URL http://www.sciencedirect.com/science/article/pii/S0020025519302713
Haykin, S. (1994). Neural networks: a comprehensive foundation, Prentice Hall PTR.
Fausett, L.V. (1994). Fundamentals of neural networks: architectures, algorithms, and applications, Vol. 3, Prentice-Hall Englewood Cliffs.
McCulloch, W. S. Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity, the bulletin of mathematical biophysics 5 (4),115–133.
Hebb, D.O. (1949). The organization of behavior: A neurophysiological approach.
Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain., Psychological review 65 (6),386.
Rumelhart, D. E. Hinton, G. E. Williams, R. J. (1986). Learning representations by back-propagating errors, nature 323 (6088), 533.
Pedrycz, F. Gomide, An introduction to fuzzy sets: analysis and design, Mit Press, 1998.
Nauck, D. Kruse, R. (1999). Neuro-fuzzy systems for function approximation, Fuzzy sets and systems 101 (2) 261–271.
Wang, L.-X. Mendel, J. M. (1992). Fuzzy basis functions, universal approximation, and orthogonal leastsquares learning, IEEE transactions on Neural Networks 3 (5) 807–814.
Czabanski, R. Jezewski, M. Leski, J. (2017). Introduction to Fuzzy Systems, Springer International Publishing, Cham, 23–43. doi:10.1007/978-3-319-59614-3_2.
URL https://doi.org/10.1007/978-3-319-59614-3_2
Pedrycz, W. Gomide, F. (2007). Fuzzy systems engineering: toward human-centric computing, John Wiley & Sons.
A. Zadeh, Fuzzy sets, Information and control 8 (1965) 3.