Application of Threshold-based Filtered Networks in Stock Portfolio Selection and Performance Evaluation
Subject Areas :
Financial Economics
Marzieh Noorahmadi
1
,
Hojatullah Sadeghi
2
*
1 - Department of Financial Management, Yazd University, Yazd, Iran.
2 - Department of Financial Management, Yazd University, Iran. (corresponding author
Received: 2023-06-27
Accepted : 2023-08-23
Published : 2023-09-23
Keywords:
Keywords: stock portfolio selection,
Hierarchical Risk Parity approach,
stock network,
Adjacency Matrix. JEL Classification: G10,
G11,
Abstract :
Abstract
Network analysis is one of the methods of attention of analysts to analyze complex relationships in data in an intuitive way. One of the applications of network analysis is illustrating the relationships between different classes of assets. Identifying stock market dynamics is essential for actors, investors, and financial policymakers. The stock market is considered a complex system that shows its complex dynamics. The complexity of the stock market can have several reasons that the interdependence of stocks can be one of the most prominent of these factors. One of the most important concerns of people in the capital market is finding a way to present and analyze stock data of different companies. There are different companies in the stock market and portfolio managers and investors, in choosing the right stock portfolio, need to consider the best way to form a stock portfolio. This article discusses the formation of diverse and non-diverse portfolios through network theory. To conduct this research, the adjusted final price of 138 listed companies for the period 2017-01-01 to 2021-07-06, equivalent to 1648 trading days, has been used. To describe the effect between stocks, the Adjacency Matrix is used and using the optimal threshold, diverse and non-diverse portfolios are obtained. We implement the results of selected stocks for the portfolio using the Hierarchical Risk Parity (HRP) approach based on clustering methods and the results with three methods of Minimum Variance (MVP), Uniform Distribution (UNIF), and Risk Parity (RP) for both in-sample and out-of-sample periods are compared for both diverse and non-diversified portfolios. Finally, the results have been compared using the four criteria of Sortino, Sharpe, Maximum DD, and Calmar. The results show the superiority of the non-diversified portfolio approach in market downturns and the superiority of the diversified portfolio approach in other periods.
References:
فهرست منابع
ابونوری، اسماعیل، تهرانی، رضا، شامانی، مسعود (1397)، عملکرد پرتفویهای مبتنی بر ریسک تحت شرایط مختلف بازار سهام (شواهد تجربی از بازار سهام ایران)، فصلنامه اقتصاد مالی، ش45، ص51-71.
پورمقدم، اسماعیل، محمدی، تیمور، فقهی کاشانی، محمد، شاکری، عباس (1397)، ارائه شاخصی جدید برای انعکاس رفتار بازار سهام با استفاده از رویکرد تحلیل شبکه های پیچیده، فصلنامه اقتصاد مالی، ش46، ص25-39.
میزبان، هدیه سادات، افچنگی، زهرا، احراری، مهدی، آروین، فرشاد، سوری، علی (1391)، بهینه سازی سبد سهام با استفاده از الگوریتم ازدحام ذرات در تعاریف مختلف اندازه گیری ریسک، فصلنامه اقتصاد مالی، ش19، ص205-227.
_||_
Al-Aradi, A., & Jaimungal, S. (2018). Outperformance and tracking: Dynamic asset allocation for active and passive portfolio management. Applied Mathematical Finance, 25(3), 268–294.
Attia, J. (2019). The Applications of Graph Theory to Investing. ArXiv Preprint ArXiv:1902.00786.
Bechis, L., Cerri, F., & Vulpiani, M. (2020). Machine Learning Portfolio Optimization: Hierarchical Risk Parity and Modern Portfolio Theory.
Bhattacharjee, B., Shafi, M., & Acharjee, A. (2017). Investigating the evolution of linkage dynamics among equity markets using network models and measures: The case of asian equity market integration. Data, 2(4), 41.
Bonanno, G., Caldarelli, G., Lillo, F., & Mantegna, R. N. (2003). Topology of correlation-based minimal spanning trees in real and model markets. Physical Review E, 68(4), 46130.
Brinson, G. P., Hood, L. R., & Beebower, G. L. (1986). Determinants of portfolio performance. Financial Analysts Journal, 42(4), 39–44.
Burggraf, T. (2020). Beyond Risk Parity–A Machine Learning-based Hierarchical Risk Parity Approach on Cryptocurrencies. Finance Research Letters, 101523.
Chi, K. T., Liu, J., & Lau, F. C. M. (2010). A network perspective of the stock market. Journal of Empirical Finance, 17(4), 659–667.
Cochrane, J. H. (1999). Portfolio advice for a multifactor world. National Bureau of Economic Research.
De Prado, M. L. (2016). Building diversified portfolios that outperform out of sample. The Journal of Portfolio Management, 42(4), 59–69.
George, S., & Changat, M. (2017). Network approach for stock market data mining and portfolio analysis. 2017 International Conference on Networks & Advances in Computational Technologies (NetACT), 251–256.
Harmon, D., Stacey, B., Bar-Yam, Y., & Bar-Yam, Y. (2010). Networks of economic market interdependence and systemic risk. ArXiv Preprint ArXiv:1011.3707.
Huang, W.-Q., Zhuang, X.-T., & Yao, S. (2009). A network analysis of the Chinese stock market. Physica A: Statistical Mechanics and Its Applications, 388(14), 2956–2964.
Hüttner, A., Mai, J.-F., & Mineo, S. (2018). Portfolio selection based on graphs: Does it align with Markowitz-optimal portfolios? Dependence Modeling, 6(1), 63–87.
Jasmeen, S., & Satyanarayana, S. V. (2012). What differentiates Active and Passive Investors? I-Manager’s Journal on Management, 7(1), 44.
Kullmann, L., Kertesz, J., & Mantegna, R. N. (2000). Identification of clusters of companies in stock indices via Potts super-paramagnetic transitions. Physica A: Statistical Mechanics and Its Applications, 287(3–4), 412–419.
Kumar, S., & Deo, N. (2012). Correlation and network analysis of global financial indices. Physical Review E, 86(2), 26101.
Lan, W., & Zhao, G. (2010). Stocks network of coal and power sectors in china stock markets. International Conference on Information Computing and Applications, 201–208.
Liu, J., Tse, C. K., & He, K. (2008). Detecting stock market fluctuation from stock network structure variation. International Symposium on Nonlinear Theory and Its Applications.
Liu, J., Tse, C. K., & He, K. (2011). Fierce stock market fluctuation disrupts scalefree distribution. Quantitative Finance, 11(6), 817–823.
Liu, X. F., & Tse, C. K. (2010). A complex network perspective to volatility in stock markets. 2010 International Symposium on Nonlinear Theory and Its Applications NOLTA, 402–405.
Mantegna, R. N. (1999). Hierarchical structure in financial markets. The European Physical Journal B-Condensed Matter and Complex Systems, 11(1), 193–197.
Mhanga, S., & Berg, A. (2019). Robo-advisors on the Swedish Market: From a Portfolio Management Perspective.
Nourahmadi, M., & Sadeqi, H. (2021). Hierarchical Risk Parity as an Alternative to Conventional Methods of Portfolio Optimization: (A Study of Tehran Stock Exchange). Iranian Journal of Finance, 5(4), 1–24. https://doi.org/10.30699/ijf.2021.289848.1242.
Onnela, J.-P., Chakraborti, A., Kaski, K., Kertesz, J., & Kanto, A. (2003). Dynamics of market correlations: Taxonomy and portfolio analysis. Physical Review E, 68(5), 56110.
Peralta, G., & Zareei, A. (2016). A network approach to portfolio selection. Journal of Empirical Finance, 38, 157–180.
Sharpe, W. F. (1991). The arithmetic of active management. Financial Analysts Journal, 47(1), 7–9.
Shukla, R. (2004). The value of active portfolio management. Journal of Economics and Business, 56(4), 331–346.
Vizgunov, A., Goldengorin, B., Kalyagin, V., Koldanov, A., Koldanov, P., & Pardalos, P. M. (2014). Network approach for the Russian stock market. Computational Management Science, 11(1–2), 45–55.
Wei, K. C. J., Liu, Y.-J., Yang, C.-C., & Chaung, G.-S. (1995). Volatility and price change spillover effects across the developed and emerging markets. Pacific-Basin Finance Journal, 3(1), 113–136.