Evaluating The Effectiveness of The GARCH-ARMA Model in Examining The Heterogeneity of Noise Shareholder Behavior Based on The Price-Volume Relationship During The Crisis, Before and after that
Subject Areas : Financial EconomicsMohammad Hasan Saleh 1 , Fazel MohammadiNodeh 2 * , Mojtaba Maleki Choubari 3
                                               1 -     Department of Accounting, Qazvin Branch, Islamic Azad University, Qazvin, Iran
                                               
                                               2 -     Department of Management, Lahijan Branch, Islamic Azad University, Lahijan, Iran
                                               
                                               3 -     Department of accounting, Lahijan Branch, Islamic Azad University, Lahijan, Iran
                                               
                                       
Abstract :
During the crisis, market participants may interpret financial information differently because the occurrence of structural failures in market prices causes them to show asymmetric behavior towards their trading strategies due to their emotions and reaction to the market trend. Therefore, the purpose of this study is to investigate and compare the effect of trading volume on the stability of return volatility, during the crisis, before and after the strictly bearish of the TSE index. Based on daily data from April 2020 to April 2021, structural break points were first determined and in different price regimes, 3 different periods were identified. The Cross-Correlation-Function showed that most of the significant lag orders, before and after the crisis, indicate that the causality in the variance is related to the previous trading volume on the current return and between the residuals squared standard past trading volume and current return. There are inconsistent signs of these correlations that serve as convincing evidence of the noise traders nature. before the crisis, both volatilities in past trading volume and current returns showed a positive correlation as well as a negative correlation in the short run. Based on the crisis data, no spillover volatility effect was observed, which indicates the presence of noise traders because they have a pessimistic belief that they can not express their belief about future returns in a logical way. In the post-crisis period, both volatilities in past trading volume and current returns are positively correlated in a short period of time.
فهرست منابع
احمد پور، احمد، آقاجائی، حسنعلی، فدوی، مصطفی (1392)، بررسی رابطه بین حجم معاملات و تغییر قیمت سهام در شرکتهای پذیرفته شده در بورس اوراق بهادار تهران، فصلنامه راهبرد مدیریت مالی، 1 (1)، 95-75.
امام وردی، قدرت اله، جعفری، سیده محبوبه (1398)، اثر بحرانهای مالی بر انتقال تکانه و سرریز نوسان میان بازارهای مالی توسعهیافته و ایران، اقتصاد مالی، 13 (47)، 84-63.
تهرانی، رضا، محمدی، شاپور، پورابراهیمی، محمدرضا (1389)، مدلسازی و پیشبینی نوسانات بازده در بورس اوراق بهادار تهران، تحقیقات مالی، 12(30)، 23-36.
زمانیان، غلامرضا، جلالی، ام البنین، کردی تمندانی، علی (1396)، رهیافت مدل احتمال مبادله آگاهانه در بررسی اثر عدم تقارن اطلاعات بر بازده سهام و حجم معاملات در شرکتهای منتخب بورس اوراق بهادار تهران، اقتصاد مالی، 11 (41)، 43-66.
سید نژاد فهیم، سید رضا، مشکی میاوقی، مهدی، چیرانی، ابراهیم، محفوظی، ابراهیم (1398)، بررسی تأثیر معاملات غیرعادی معامله گران آگاه بر نقد شوندگی سهام، مجله پیشرفتهای حسابداری دانشگاه شیراز، 11 (1)، 169-143.
نجار زاده، رضا، زیودار، مهدی (1385)، بررسي رابطه تجربي بين حجم معاملات و بازده سهام در بازار بورس اوراق بهادار تهران، فصلنامه پژوهشهای اقتصادي، 41 (3)، 299-273.
نمازی، محمد، حاجیها، زهره، چناری بوکت، حسن (1394)، مطالعهی پدیدهی فرآیند آشوب در شاخص قیمت و بازده نقدی در بورس اوراق بهادار تهران. اقتصاد مالی، 9 (33)، 35-54.
Alsubaie, A., &Najand, M. (2009). Trading volume, time-varying conditional volatility, and asymmetric volatility spillover in the Saudi stock market. Journal of Multinational Financial Management, 19(2), 139–159.
Aludari, .GH, Moghadam, .j, Rezvanifard, .S, & Mehdi .M (2011). Investigate the simultaneous and dynamic relationship between trading volume and stock returns using Vector auto regression models. Journal of Securities Exchange,15, 27-41.
Andersen, T. G. (1996). Return volatility and trading volume: an information flow interpretation of stochastic volatility. Journal of Finance, 51(1), 169-204.
Ardalankia, Jamshid., Osoolian, Mohammad., Haven, Emmanuel., Jafari, G. Reza, (2020), Scaling features of price–volume cross correlation, Physica A: Statistical Mechanics and its Applications, 549, ISSN 0378-4371, https://doi.org/10.1016/j.physa.2019.124111
Ball, R. (2009). The global financial crisis and the efficient market hypothesis: what have we learned?. Journal of Applied Corporate Finance, 21(4), 8-16.
Bhar, R., Hamori, S. (2005). Causality in variance and the type of traders in crude oil futures. Energy Economics, 27(3), 527-539.
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307-327.
Chan, K., Fong, W. M., (2000). Trade size, order imbalance, and the volatility-volume relation. Journal of Financial Economics, 57(2), 247–273.
Connolly, R., Stivers, C. (2003). Momentum and reversals in equity-index returns during periods of abnormal turnover and return dispersion. Journal of Finance, 58(4), 1521-1556.
Easley, D., Kiefer, N. and O’Hara, M. (1997a). The information content of the trading process, Journal of Empirical Finance, 4(2), 159-86.
Easton, S., Kerin, P. (2010). Market efficiency and the global financial crisis. Australian Economic Review, 43(4), 464-468.
Engle R. F., Ito T., Lin W. L. (1990). Meteor showers or heat waves? Heteroskedastic intra-daily volatility in the foreign exchange market. Econometrica, 58(3), 525-542.
Epps, T. W. (1975). Security price changes and transaction volumes: theory and evidence. The American Economic Review, 65(4), 586-597.
Epps, W. and M. Epps (1976)The Stochastic Dependence of Security Price Changes and Transaction Volumes: Implications for the Mixture of Distributions Hypothesis; Econometrica, 44, 305-321.
Gebka, B. (2005), Dynamic volume-return relationship: evidence from an emerging capital market. Applied Financial Economics, 15(14), 1019-1029.
Gennotte, G., Leland, H. (1990), Market liquidity, hedging, and crashes. American Economic Review, 80(5), 999-1021.
Giot, P., Laurent, S., &Petitjean, M. (2010). Trading activity, realized volatility and jumps. Journal of Empirical Finance, 17(1), 168–175.
Go, Y. H., Lau, W. Y. (2014). Asymmetric information spillovers between trading volume and price changes in Malaysian futures market, Journal of Asian Finance. Economics and Business,1(3), 5-16.
Harris M., and A. Raviv (1993), "The Theory of Capital Structure", Journal of Finance, 46 (1), 297-355.
Hong, Y. (2001). A test for volatility spillover with application to exchange rate. Journal of Econometrics, 103(1&2), 183-224.
Jennings, R. H., Starks, L. T., Fellingham, J. C. (1981). An equilibrium model asset trading with sequential information arrival. Journal of Finance, 36(1), 143-161.
Karpoff, J. M. (1987) The relation between price changes and trading volume: a survey. Journal of Financial and Quantitative Analysis, 22(1), 109-126.
Lamoureux, C. G., &Lastrapes, W. D. (1990). Heteroskedasticity in stock return data: Volume versus GARCH effects. The Journal of Finance, 45(1), 221–229.
Liu, X., Liu, X., Liang, X. (2015). Information-driven trade and price-volume relationship in artificial stock markets. Physica A: Statistical Mechanics and its Applications, 430, 73-80.
Llorente, G., Michaely, R., Saar, G., Wang, J. (2002). Dynamic volume-return relation of individual stocks. Review of Financial Studies, 15(4), 1005-1047.
Moosa, I. A., Silvapulle, P., Silvapulle, M. (2003). Testing for temporal asymmetry in the pricevolume relationship. Bulletin of Economic Research, 55(4), 373-389.
Pati, P. C., &Rajib, P. (2010). Volatility persistence and trading volume in an emerging futures market: Evidence from NSE Nifty stock index futures. Journal of Risk Finance, 11(3), 296–309
Pati, P. C., Rajib, P. (2010). Volatility persistence and trading volume in an emerging futures market: evidence from NSE Nifty stock index futures. Journal of Risk Finance, 11(3), 296-309.
Pyun, C., Lee, S., & Nam, K. (2000). Volatility and information flows in emerging equity markets: A case of the Korean stock exchange. International Review of Financial Analysis, 9(4), 405–420.
Ross, S. A. (1989). Information and volatility: the no-arbitrage martingale approach to timing and resolution irrelevancy. Journal of Finance, 44(1), 1-17.
Slim, S. &Dahmene, M. (2015). Asymmetric information, volatility components and the volume-volatility relationship for the CAC40 stocks, Global Finance Journal, 29, 70-84.
Stickel, S. E., Verrecchia, R. E. (1994). Evidence that trading volume sustains stock price changes. Financial Analysts Journal, 50(6), 57-67.
Szetela, B., Mentel, G., Bilan, Y (2021). The relationship between trend and volume on the bitcoin market. Eurasian Econ Rev, 11, 25–42. https://doi.org/10.1007/s40822-021-00166-5
Tersvirta, T. (1998). Modelling Economic Relationship with Smooth Transition Regressions, In Giles, D.E.A, Ullah, A. (Eds.), Applied Economic Statistics. Marcel Dekker, New York, 507-552.
Wang, J. (1994). A model of competitive stock trading volume. Journal of Political Economy 102(1), 127-168.
Xu, X. E., Wu, C. (1999). The intraday relation between return volatility, transactions, and volume. International Review of Economics and Finance, 8(4), 375-397.
Xua, Xiaoqing Eleanor., Wu, Chunchi (1999), The intraday relation between return volatility, transactions, and volume, International Review of Economics and Finance, 8(4), 375-397.