Experimentally Designed of PVC/NiAl2O3/AlF3 Nanocomposite by Sol-Gel Method
Subject Areas : composite materialsElinaz Ahmadian 1 , Maryam Kargar Razi 2 * , Babak Sadeghi 3 , Mahbobeh Nakhaei 4
1 - Department of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, IRAN
2 - Department of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran
3 - Department of Chemistry, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
4 - Department of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, IRAN
Keywords: Nano Catalytic activity, Nano-Size, Morphology, Sol-gel, TEM,
Abstract :
In this study, we have synthesized nano Aluminum Fluoride (nAF) nanoparticles by the sol-gel method and studied the nano-sized morphology of crystals. In the other section, the PVC/NiAl2O3/AlF3 (nPNA) nanocomposite was successfully prepared and characterized by FT-IR, and HRTEM techniques. FTIR peaks of the PVC and nPNA have been shown spherical shape of PVC and also spherical shapes nanoparticles of nPNA loaded on PVC. A solvothermal method has been successfully introduced and applied for catalyst efficiency. This nanocomposite was used for the removal of Congo red dye. For this purpose, the morphology and the structure of crystals have been changed by modification on precursor gel. Meanwhile, precursor gel preparation and the interaction on the nano-sized area have been studied. This study exhibited that PVC/NiAl2O3/AlF3 (nPNA) nanocomposite is an effective catalyst for the synthesis of some organic derivatives. The results show that the as-prepared nanocomposite is an efficient catalyst and that PVC/NiAl2O4/AlF3 nanocomposite can be used in the next-generation of some organic reactions and faster production of various materials.
[1] Turner, M. E., Trentler, T. J., and Colvin, V. L., Thin Films of Macroporous Metal Oxides, Adv. Mater., Vol. 13, 2001, pp. 180-183.
[2] Aguado, J., Serrano, D. P., Escola, J. M., Garagorri, E., and Fernandez, J. A., Catalytic Cracking of a Polyolefin Mixture Over Different Acid Solid Catalysts, Polym. Degrad. Stabil., Vol. 69, 2000, pp. 11-16.
[3] Gronchi, P., Kaddouri, A., Centola, P., and Del Rosso, R., Synthesis of Nickel Supported Catalysts for Hydrogen Production by Sol-Gel Method, J. Sol-Gel Sci. Tech., Vol. 26, 2003, pp. 843-846.
[4] L. Khelifi, L., Ghorbel, A., Effect of Preparation Conditions on the Stability of Pt/Al2O3 Catalysts in Methane Combustion, J. Sol-Gel Sci Tech., Vol. 19, 2000, pp. 643-646.
[5] Meixner, H., Lampe, U., Gerblinger, J., and Fleische, M., Chemosensors for Motor Management Systems of The Future, Fresenius J. Anal. Chem., Vol. 348, 1994, pp. 536-541.
[6] Bennett, R. A., McCavish, N. D., Non-Stoichiometric Oxide Surfaces and Ultra-Thin Films: Characterisation of TiO2, Topics in Catalysis. Vol. 36, 2005, pp. 11-19.
[7] Chemistry of Advanced Materials: An Overview, Wiely-VCH, Inc, Canada, 1998, Chapt. 9, Molecular Precursor Routes to Inorganic Solids, pp. 389–448.
[8] Righini, G. C., Pelli, S., Nonlinear Properties of Semiconductor-Doped Silica Solgel Films, J. Sol-Gel Sci. Tech., Vol. 8, 1997, pp. 991–997.
[9] Maryani, E., Abdullah, M., Dayamanti, H., and Septawendar, R., Effect of Ultrasonic Irradiation on The Characteristic of γ-Al2O3 Nanorods Synthesized from Nitrate Salt-Starch Precursors Trough a Facile Precipitation Method, J. Ceram. Soc. Japan., Vol. 124, 2016, pp. 1205-1210.
[10] Amirsalari, Farjami, S., Effect of pH and Calcinations Temperature on Structural and Optical Properties of Alumina Nanoparticles, J. Superlatt. Microstruct. Vol. 82, 2015, pp. 507-524.
[11] Da-Ros, S., Barbosa-Coutinho, E., Schwaab, M., Calsavara, V., and Fernandes-Machado, N. R. C., Modeling the Effects of Calcination Conditions on The Physical and Chemical Properties of Transition Alumina Catalysts, J. Mater. Character., Vol. 80, 2013, pp. 50-61.
[12] Tayseir Mohammed, E., Saikat, M., Some Studies on The Surface Modification of Sol-Gel Derived Hydrophilic Silica Nanoparticles, Int. J. Nano Dimens., Vol. 8, 2017, pp. 97-106.
[13] Maity, S. K., Ancheyta, J., and Rana, M. S., Support Effects on Hydroprocessing of Maya Heavy Crude, J. Energy and Fuel., Vol. 19, 2005, pp. 343-347.
[14] Fernandez., V. C., Ramrez, J., Alejandre, A. G., Sanchez-Minero, F., Cuevas-Garcıa, R., and Torres-Mancera, P., Synthesis, Characterization and Evaluation of NiMo/SiO2–Al2O3 Catalysts Prepared by the pH-Swing Method, J. Catal. Today., Vol. 130, 2008, pp. 337–344.
[15] Dao Quan, H., Yang, H., Tamura, M., and Sekiya., A., SbF5/PAF—a Novel Fluorinating Reagent in Preparing Fluorine Compounds, J. Fluorine Chem., Vol. 125, 2004, pp. 1169-1172.
[16] Sekiya, dao Quan, H., Tamura, M., Gao, R. X., and Murata, J., Sol-Gel Synthesis and Catalytic Properties of PVC/NiAl2O3/AlF3 Nanocomposite", J. Fluorine Chem., Vol. 112, 2001, pp. 145-148.
[17] Dao Quan, H., Tamura, M., Takagi, T., and Sekiya, A., Fluorination of N-Dodecane Adsorbed on Porous Aluminium Fluoride by Gaseous Fluorine, J. Fluorine Chem., Vol. 99, 1999, pp. 167-170.
[18] Krespan, C. G., Dixon, D. A., Fluoroolefin Condensation Catalyzed by Aluminum Chlorofluoride, J. Fluorine Chem., Vol. 77, 1996, pp. 117-126.
[19] Sadjadi, M. A. S., Sadeghi, B., Meskinfam, M., Zare, K., and Azizian, J., Synthesis and Characterization of Ag/PVA Nanorods By Chemical Reduction Method, Physica E: Low-Dimensional Systems and Nanostructures, Vol. 40, 2008, pp. 3183-3186.
[20] Sadeghi, B., Sadjadi, M. A. S., and Vahdati, R. A. R., Nanoplates Controlled Synthesis and Catalytic Activities of Silver Nanocrystals, Superlattices and Microstructures, Vol. 46, 2009, pp. 858-863.
[21] Sadeghi, B., Jamali, M., Kia, Sh., Amini Nia, A., and Ghafari., S., Synthesis and Characterization of Silver Nanoparticles for Antibacterial Activity, Int. J. Nano Dimens., Vol. 1, 2010, pp. 119-124.
[22] Sadeghi, B., Garmaroudi, F. S., Hashemi, M., Nezhad, H. R., Nasrollahi, A., Ardalan, S., and Ardalan, S., Comparison of the Anti-Bacterial Activity on The Nanosilver Shapes: Nanoparticles, Nanorods and Nanoplates, Adv. Powder Technol., Vol. 23, 2012, pp. 22-26.
[23] Sadeghi, B., Pourahmad, A., Synthesis of Silver/Poly (Diallyl Dimethyl Ammonium Chloride) Hybride Nanocomposite, Adv. Powder Tech., Vol. 22, 2012, pp. 669-673.
[24] Sadeghi, B., Ghammamy, Sh., Gholipour, Z., and Amini Nia, A., Gold/Hydroxypropyl Cellulose Hybrid Nanocomposite Constructed with More Complete Coverage of Gold Nano-Shell, Mic & Nano Lett., Vol. 6, 2011, pp. 209-213.
[25] Sadeghi, B., Preparation of ZnO/Ag Nanocomposite and Coating on Polymers for Anti-Infection Biomaterial Application, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy., Vol. 118, 2014, pp. 787-792.
[26] Sadeghi, B., Controlled Growth and Characterization Ag/ZnO Nanotetrapods for Humidity Sensing, Comb. Chem. & High throughput Screening., Vol. 21, 2018, pp. 1-6.
[27] Sadeghi, B., Meskinfam, M., A Direct Comparison of Nanosilver Particles and Nanosilver Plates for The Oxidation of Ascorbic Acid, Spectrochim. Acta Part A: Molec. Biomolec. Spectros., Vol. 97, 2012, pp. 326-328.
[28] Vahdat, S. M., Ghafouri Raz, Sh., and Baghery, S., Application of nano SnO2 as a Green and Recyclable Catalyst for The Synthesis of 2-aryl or Alkylbenzoxazole Derivatives Under Ambient Temperature, J. Chem. Sci., Vol. 126, 2014, pp. 579-585.
[29] Vahdat, S. M., Chekin, F., Hatami, M., Khavarpour, M., Baghery, S., and Roshan-Kouhi, Z., Synthesis of Polyhydroquinoline Derivatives Via a Four-Compone, Chin. J. Catal., Vol. 34, 2013, pp. 758-763.
[30] Zolfigol, M. A., Baghery, S., Moosavi-Zare, A. R., Vahdat, S. M., Alinezhad, H., and Norouzi, M., Design of 1-Methylimidazolium Tricyanomethanide as The First Nanostructured Molten Salt and Its Catalytic Application in The Condensation Reaction of Various Aromatic Aldehydes, Amides And β-Naphthol Compared with Tin Dioxide Nanoparticles, RSC Adv., Vol. 5, 2015, pp. 45027-45037.
[31] Liu, Ch., Li, J., Liew, K., Zhu, J., and Bin Nordin, M. R., An Environmentally Friendly Method for The Synthesis of Nano-Alumina with Controllable Morphologies, J. RSC Adv., Vol. 2, 2015, pp. 8352–8358.
[32] Wuy, Y. S., Ma, J., Hu, F., and Li, M. C., Synthesis and Characterization of Mesoporous Alumina Via a Reverse Precipitation Method, J. Mater. Sci. Technol., Vol. 28, 2011, pp. 572-576.
[33] Sun, X., Li, J., Zhang, F., Qin, X., Xiu, Zh., and H. Ru, H., Synthesis of Nanocrystalline γ-Al2O3 Powders from Nanometric Ammonium Aluminum Carbonate Hydroxide, J. Am. Ceram. Soc., Vol. 86, 2003, pp. 1321-1325.
[34] Xiuhong, M., Linhai, D., Xiaohua, X., Qiang, W., and Haiyan, W., Synthesis of Macro Mesostructured γ-Al2O3 with Large Pore Volume and High Surface Area by A Facile Secondary Reforming Method, J. China Petrol. Process. Petrochem. Technol., Vol. 16, 2014, pp. 20-28.
[35] Zhu, Zh., Sun, H., Liu, H., and Yang, D., PEG-Direct Hydrothermal Synthesis of Alumina Nanorods with Mesoporous Structure via AACH Nanorod Precursors, J. Mater. Sci., Vol. 45, 2010, pp. 46-54.
[36] Gerrard, D. L., Maddams, W. F., The Resonance Raman Spectrum of Degraded Poly (Vinyl Chloride), 2. γ-Irradiated Samples, Macromolecules, Vol. 10, 1977, pp. 1221-1224.
[37] Ganesan, D., Samikanno, A., Muthaiah, Ch., and Ramasamy, K. M., Synthesis and Characterization of CdS Nanoparticle Anchored Silica-Titania Mixed Oxide Mesoporous Particles: Efficient Photocatalyst for Discoloration of Textile Effluent, Int. J. Nano Dimens., Vol. 10, 2019, pp. 272-280.
[38] Rajesh Krishnan, G., Sreeraj, M. K., and Sreekumar, K., Modification of Poly (Vinyl Chloride) With Pendant Metal Complex for Catalytic Applications, C. R. Chimie., Vol. 16, 2013, pp. 736-741.
[39] Huang, G., He, E., Wang, Z., Fan, H., Shangguan, J., Croiset, E., and Chen, Z., Synthesis and Characterization ofγ Fe2O3for H2S Removal at Low Temperature, Ind. Eng. Chem. Res., Vol. 54, 2015, pp. 8469-8478.
[40] Mehdizadeh, R., Saghatforoush, L. A., and Sanati, S., Solvothermal Synthesis and Characterization of α-Fe2O3 Nanodiscs and Mn3O4 Nanoparticles with 1,10-Phenanthroline, Superlatt. Microstruct., Vol. 52, 2012, pp. 92-98.
[41] Rajput, J, K., Kaur, G., CoFe2O4 Nanoparticles: An Efficient Heterogeneous Magnetically Separable Catalyst For “Click” Synthesis of Arylidene Barbituric Acid Derivatives at Room Temperature, Chin. J. Catal., Vol. 34, 2013, pp. 1697-1704.
[42] Schafer, H., Milow, B., and Ratke, L., Synthesis of Inorganic Aerogels Via Rapid Gelation Using Chloride Precursors, RSC Adv., Vol. 3, 2013, pp. 15263-15272.
[43] Khan, K. M., Ali, M., Farooqui, T. A., Khan, M., Taha, M., and Perveen, S., An Improved Method for The Synthesis of 5-Arylidene Barbiturates Using BiCl3, J. Chem. Soc. Pak., Vol. 31, 2009, pp. 823-828.
[44] Alcerreca, G., Sanabria, R., Miranda, R., Arroyo, G., Tamariz, J., and Delgado, F., Preparation of Benzylidene Barbituric Acids Promoted by Infrared Irradiation in Absence of Solvent, Synth. Commun., Vol. 30, 2000, pp. 1295-1301.
[45] Quinonero, D., Ferontera, A., Benzen, An Unexpected Binding Unit in Anion-π Recognition: The Critical Role of CH/π Interactions, Sci. Vol. 4, 2022, pp. 32-36.
[46] Katarzyna, O., Katarzyna, M. S., Marlena, G., Oskar, K., Mateusz, Z. B., Piotr, G., Michał, L., Rosław, G., and Agnieszka, W., Influence of Hydrogen Bonds and π–π Interactions on the Fluorescence of Crystalline (N-Alkylpyridyl) enamino-pyrrolo [2,3-b] Quinoxalin-2-One Derivatives, Crys. Growth Des., Vol. 22, 2022, pp. 1571-1582.