Bending Optimization of Composite Sandwich Panels with Second-Order Corrugated Cores
Subject Areas : composite materialsMahdi Shaban 1 , Sanaz Khoshlesan 2 , Mohammad sajad Shamsi monsef 3
1 - Department of Mechanical Engineering,University of Bu-Ali Sina, Iran
2 - Mechanical Engineering Department, Bu-Ali Sina University, Hamadan, Iran
3 - Mechanical Engineering Department, Bu-Ali Sina University, Hamadan, Iran
Keywords: Design of Experiments, Optimization, Sandwich Panel, Second-Order Corrugated Core, Stiffness,
Abstract :
Second-order corrugated cores are one type of hierarchical cores that use the common corrugated cores as constituent elements for the main core. This paper attempts to identify and optimize the bending properties of composite sandwich panels with second-order corrugated core. To this end, both first- and second-order corrugated cores are constructed and force-displacement diagrams are extracted in three-point bending tests. Finite element models are created and the deflection results are validated by experiments. Based on the Taguchi method, various finite element models with different geometrical parameters are modeled and reaction force and stiffness are determined. Stiffness formulas for first- and second-order corrugated cores are determined by using regression analysis. The constrained-optimization results are determined to optimize the stiffness of sandwich panels with first- and second-order corrugated cores, separately. The global optimization problem is implemented to compare the first- and second-order configurations.
[1] Kooistra, G. W. Deshpande, V. S. and Wadley, H. N. G., Compressive Behavior of Age Hardenable Tetrahedral Lattice Truss Structures Made from Aluminium, Acta Mater., Vol. 52, No. 14, 2004, pp. 4229–4237, doi: 10.1016/j.actamat.2004.05.039.
[2] Nuño, M., Bühring, J., Rao, M. N., and Schröder, K. U., Delamination Testing of AlSi10Mg Sandwich Structures with Pyramidal Lattice Truss Core made by Laser Powder Bed Fusion, Chinese J. Mech. Eng. English Ed., Vol. 34, No. 1, 2021, doi: 10.1186/s10033-021-00643-7.
[3] Liang, Y. H., Louca, L. A., and Hobbs, R. E., A Simplified Method in The Static Plastic Analysis of Corrugated Steel Panels, J. Strain Anal. Eng. Des., Vol. 41, No. 2, 2006, pp. 135–149, doi: 10.1243/030932405x30948.
[4] Wang, D., Cushioning Properties of Multi-Layer Corrugated Sandwich Structures, J. Sandw. Struct. Mater., Vol. 11, No. 1,2009, pp. 57–66, doi: 10.1177/1099636208100415.
[5] Bartolozzi, G., Pierini, M., Orrenius, U., and Baldanzini, N., An Equivalent Material Formulation for Sinusoidal Corrugated Cores of Structural Sandwich Panels, Compos. Struct., Vol. 100, 2013, pp. 173–185, doi: 10.1016/j.compstruct.2012.12.042.
[6] Åslund, P. E., Hägglund, R., Carlsson, L. A., and Isaksson, P., Modeling of Global and Local Buckling of Corrugated Board Panels Loaded in Edge-To-Edge Compression, J. Sandw. Struct. Mater., Vol. 16, No. 3, 2014, pp. 272–292, doi: 10.1177/1099636213519374.
[7] Ye, Z., Berdichevsky, V. L., and Yu, W., An Equivalent Classical Plate Model of Corrugated Structures, Int. J. Solids Struct., Vol. 51, No. 11–12, 2014, pp. 2073–2083, doi: 10.1016/j.ijsolstr.2014.02.025.
[8] Kiliçaslan, C., Güden, M., Odaci, I. K., and Taşdemirci, A., Experimental and Numerical Studies on The Quasi-Static and Dynamic Crushing Responses of Multi-Layer Trapezoidal Aluminum Corrugated Sandwiches, Thin-Walled Struct., Vol. 78, 2014, pp. 70–78, doi: 10.1016/j.tws.2014.01.017.
[9] Dayyani, I., Shaw, A. D., Saavedra Flores, E. I., and Friswell, M. I., The Mechanics of Composite Corrugated Structures: A Review with Applications in Morphing Aircraft, Compos. Struct., Vol. 133, 2015, pp. 358–380, doi: 10.1016/j.compstruct.2015.07.099.
[10] Magnucka-Blandzi, E., Magnucki, K., and Wittenbeck, L., Mathematical Modeling of Shearing Effect for Sandwich Beams with Sinusoidal Corrugated Cores, Appl. Math. Model., Vol. 39, No. 9, 2015, pp. 2796–2808, doi: 10.1016/j.apm.2014.10.069.
[11] Park, K. J., Jung, K., and Kim, Y. W., Evaluation of Homogenized Effective Properties for Corrugated Composite Panels, Compos. Struct., Vol. 140, 2016, pp. 644–654, doi: 10.1016/j.compstruct.2016.01.002.
[12] Kheirikhah, M. M., Babaghasabha, V., Bending and Buckling Analysis of Corrugated Composite Sandwich Plates, J. Brazilian Soc. Mech. Sci. Eng., Vol. 38, No. 8, 2016, pp. 2571–2588, doi: 10.1007/s40430-016-0498-6.
[13] Kheirikhah, M. M., Babaghasabha, V., Naeimi-Abkenari, A., and Khadem, M., Free Vibration Analysis of Corrugated-Face Sheet Composite Sandwich Plates, J. Brazilian Soc. Mech. Sci. Eng., Vol. 38, No. 7, 2016, pp. 1973–1985, doi: 10.1007/s40430-015-0306-8.
[14] Paczos, P., Wasilewicz, P., and Magnucka-blandzi, E., Experimental and Numerical Investigations of Five-Layered Trapezoidal Beams, Compos. Struct., Vol. 145, 2016, pp. 129–141, doi: 10.1016/j.compstruct.2016.02.079.
[15] Dayyani, I., Friswell, M. I., Multi-Objective Optimization for The Geometry of Trapezoidal Corrugated Morphing Skins, Struct. Multidiscip. Optim., Vol. 55, No. 1, 2017, pp. 331–345, doi: 10.1007/s00158-016-1476-4.
[16] Han, B., Qin, K. K., Zhang, Q. C., Zhang, Q., Lu, T. J., and Lu, B. H., Free Vibration and Buckling of Foam-Filled Composite Corrugated Sandwich Plates Under Thermal Loading, Compos. Struct., Vol. 172, 2017, pp. 173–189, doi: 10.1016/j.compstruct.2017.03.051.
[17] Lurie, S. A., Solyaev, Y. O., Volkov-Bogorodskiy, D, B., Bouznik, V. M., and Koshurina, A. A., Design of the Corrugated-Core Sandwich Panel for The Arctic Rescue Vehicle, Compos. Struct., Vol. 160, 2017, pp. 1007–1019, doi: 10.1016/j.compstruct.2016.10.123.
[18] Shaban, M., Alibeigloo, A., Three-Dimensional Elasticity Solution for Sandwich Panels with Corrugated Cores by Using Energy Method, Thin-Walled Struct., Vol. 119, 2017, pp. 404–411, doi: dx.doi.org/10.1016/j.tws.2017.06.035.
[19] Shaban, M., Alibeigloo, A., Global Bending Analysis of Corrugated Sandwich Panels with Integrated Piezoelectric Layers, Journal of Sandwich Structures and Materials, 2018.
[20] Du, B., et al., Fabrication and Bending Behavior of Thermoplastic Composite Curved Corrugated Sandwich Beam with Interface Enhancement, Int. J. Mech. Sci., Vol. 149, No. October, 2018, pp. 101–111, doi: 10.1016/j.ijmecsci.2018.09.049.
[21] Zhang, J., Ye, Y., Zhu, Y., Qin, Q., and Wang, T. J., Dynamic Collapse of Metal Self-Similar Hierarchical Corrugated Sandwich Plates, Acta Mech., Vol. 230, No. 5, 2019, pp. 1549–1563, doi: 10.1007/s00707-018-2342-9.
[22] Taghizadeh, S. A., et al., Characterization of Compressive Behavior of Pvc Foam Infilled Composite Sandwich Panels with Different Corrugated Core Shapes, Thin-Walled Struct., Vol. 135, No. October, 2018, pp. 160–172, 2019, doi: 10.1016/j.tws.2018.11.019.
[23] An, H., Chen, S., and Huang, H., Stacking Sequence Optimization and Blending Design of Laminated Composite Structures, Struct. Multidiscip. Optim., Vol. 59, No. 1, 2019, pp. 1–19, doi: 10.1007/s00158-018-2158-1.
[24] Fu, B., Liao, C., Xie, L., Li, Z., and Shu, R., A Theoretical Analysis on Crush Characteristics of Corrugated Tube Under Axial Impact and Experimental Verification, J. Brazilian Soc. Mech. Sci. Eng., Vol. 42, No. 10, 2020, doi: 10.1007/s40430-020-02593-y.
[25] Zamanifar, H., Sarrami-Foroushani, S., and Azhari, M., A Parametric Study on The Mechanical and Thermal Stability of Corrugated-Core Sandwich Plates, Structures, Vol. 24, No. January, 2020, pp. 209–226, doi: 10.1016/j.istruc.2020.01.015.
[26] Bahrami-Novin, N., Mahdavi, E., Shaban, M., and Mazaheri, H., Multi-Objective Optimization of Tensile Properties of The Corrugated Composite Sheet, J. Compos. Mater., Vol. 56, No. 5, 2021, pp. 811–821, doi: 10.1177/00219983211059580.
[27] Yüksel, E., et al., Experimental Investigation and Pseudoelastic Truss Model for In-Plane Behavior of Corrugated Sandwich Panels with Polyurethane Foam Core, Structures, Vol. 29, 2021, pp. 823–842, doi: https://doi.org/10.1016/j.istruc.2020.11.058.
[28] Santos, L., Izzuddin, B. A., and Macorini, L., Gradient-Based Optimisation of Rectangular Honeycomb Core Sandwich Panels, Struct. Multidiscip. Optim., Vol. 65, No. 9, 2022, pp. 1–18, doi: 10.1007/s00158-022-03341-7.
[29] Novin, N. B., Shaban, M., and Mazaheri, H., Flexural Response of Fiber ‑ Metal Laminate Face ‑ Sheet / Corrugated Core Sandwich Beams, J. Brazilian Soc. Mech. Sci. Eng., 2022, doi: 10.1007/s40430-022-03492-0.
[30] Vakilifard, V., Mazaheri, H., and Shaban, M., Bending Behavior and Geometrical Optimization of Five-Layered Corrugated Sandwich Panels with Equal In-Plane Principal Stiffness, J. Compos. Mater., Vol. 56, No. 17, 2022, pp. 2739–2753, doi: 10.1177/00219983221082236.
[31] Wang, H., Guo, Y., Fu, Y., and Li, D., Out-of-Plane Static Compression and Energy Absorption of Paper Hierarchical Corrugation Sandwich Panels, J. Strain Anal. Eng. Des., vVol. 57, No. 2, 2022, pp. 132–143, doi: 10.1177/03093247211008566.
[32] Talaie, P., Shaban, M., and Khoshlesan, S., Flexural Analysis of Second-Order Corrugated Composite Cores: Experimental, Numerical, And Theoretical Studies, J. Strain Anal. Eng. Des., 2023.