Optimizing Friction Stir Welding Process for Enhancing Strength and Hardness using Taguchi Multi-Objective Function Method
Subject Areas : weldingSajjad Khaki 1 , Ali Heidari 2 * , Amin Kolahdooz 3
1 - Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr/Isfahan, Iran
2 - Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr/Isfahan, Iran
3 - Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr/Isfahan, Iran
Keywords: Taguchi Technique, Strength, Hardness, Friction Stir Welding, Aluminium Alloy,
Abstract :
As a solid-state welding method, friction stir welding is widely employed for welding aluminium alloys. An important subject in this regard is the optimal adjustment of the parameters to maximize the ultimate tensile strength and the surface hardness. Four parameters have been selected for the multi-objective optimization of the 6061-T6 aluminium alloy, namely the rotational and the linear speed of the tool, the variation of the shoulder diameter with respect to the pin diameter (D⁄d ratio), and the shoulder base angle. The Taguchi's L9 Orthogonal Array has been employed for designing experiments. The experimental results have been examined using the Taguchi signal-to-noise (S/N) method, the analysis of variance, and regression. Optimization using the multi-objective Taguchi function revealed that a rotational speed of 800 rpm, a D⁄d ratio of 18/6, a shoulder base angle of 7°, and a linear speed of 80 mm/min yield both maximum strength and surface hardness. The results of the S/N analysis suggested the rotational speed of the tool and the linear tool speed have the most significant impact on the tensile strength with the average of 44.07 dB. On the other hand, the linear speed and the ratio of the diameters have the most significant impact on the surface hardness (around 36.91 dB). The results showed that using this optimization method, simultaneous improvement of tensile strength and surface hardness occurs. In fact, the tensile strength and hardness of the sheet surface were improved by 17.3% and 6.2%, respectively.
[1] Kim, Y. G., Kim, J. S., and Kim, I. J., Effect of Process Parameters on Optimum Welding Condition of DP590 Steel by Friction Stir Welding, Journal of Mechanical Science and Technology, Vol. 28, No. 12, 2014, pp. 5143-5148, DOI: https://doi.org/10.1007/s12206-014-1138-7.
[2] Elatharasan, G., Kumar, V. S. S., An Experimental Analysis and Optimization of Process Parameter on Friction Stir Welding of AA 6061-T6 Aluminum Alloy Using RSM, Procedia Engineering, Vol. 64, 2013, pp. 1227-1234, DOI: https://doi.org/10.1016/j.proeng.2013.09.202.
[3] Ansari, M. A., Behnagh, R. A., Narvan, M., Naeini, E. S., Givi, M. K. B., and Ding, H., Optimization of Friction Stir Extrusion (FSE) Parameters Through Taguchi Technique, Transactions of the Indian Institute of Metals, Vol. 69,No. 7, 2016, pp. 1351-1357, DOI: https://doi.org/10.1007/s12666-015-0686-6.
[4] Palanivel, R., Mathews, P. K., Murugan, N., and Dinaharan, I., Prediction and Optimization of Wear Resistance of Friction Stir Welded Dissimilar Aluminum Alloy, Procedia Engineering, Vol. 38, 2012, pp. 578-584, DOI: https://doi.org/10.1016/ j.proeng.2012.06.072.
[5] Babu, S., Elangovan, K., Balasubramanian, V., and Balasubramanian, M., Optimizing Friction Stir Welding Parameters to Maximize Tensile Strength of AA2219 Aluminum Alloy Joints, Metals and Materials International, Vol. 15,No. 2, 2009, pp. 321-330, DOI: https://doi.org/10.1007/s12540-009-0321-3.
[6] Ghetiya, N. D., Patel, K. M., and Kavar, A. J., Multi-Objective Optimization of FSW Process Parameters of Aluminium Alloy Using Taguchi-Based Grey Relational Analysis, Transactions of the Indian Institute of Metals, Vol. 69, No. 4, 2016, pp. 917-923, DOI: https://doi.org/10.1007/s12666-015-0581-.
[7] Zhang, Z., Liu, Y. L., and Chen, J. T., Effect of Shoulder Size on the Temperature Rise and the Material Deformation in Friction Stir Welding, The International Journal of Advanced Manufacturing Technology, Vol. 45, No. 9, 2009, pp. 889-895, DOI: https://doi.org/10.1007/s00170-009-2034-7.
[8] Venkateswarlu, G., Davidson, M. J., and Tagore, G. R. N., Taguchi Optimisation of Friction Stir Processing Parameters to Achieve Maximum Tensile Strength of Mg AZ31B Alloy, Transactions of the Indian Institute of Metals, Vol. 65, No. 5, 2012, pp. 491-496, DOI: https://doi.org /10.1007 /s12666-012-0159-0.
[9] Zhang, Z., Wu, Q., and Zhang, H. W., Numerical Studies of Effect of Tool Sizes and Pin Shapes on Friction Stir Welding of AA2024-T3 Alloy, Transactions of Nonferrous Metals Society of China, Vol. 24, No. 10, 2014, pp. 3293-3301, DOI: https://doi.org/10.1016/S1003-6326(14)63469-5.
[10] Meena, K., Kumar, A., and Pandya, S. N., Optimization of Friction Stir Processing Parameters for 60/40 Brass Using Taguchi Method, Materials Today: Proceedings, Vol. 4,No. 2, Part A, 2017, pp. 1978-1987, DOI: https://doi.org/10.1016/ j.matpr.2017.02.044.
[11] Saravanan, V., Rajakumar, S., Banerjee, N., and Amuthakkannan, R., Effect of Shoulder Diameter to Pin Diameter Ratio on Microstructure and Mechanical Properties of Dissimilar Friction Stir Welded AA2024-T6 and AA7075-T6 Aluminum Alloy Joints, The International Journal of Advanced Manufacturing Technology, Vol. 87, No. 9, December 01 2016, pp. 3637-3645, DOI: https://doi.org/10.1007/s00170-016-8695-0.
[12] Dinaharan, I., Murugan, N., Optimization of Friction Stir Welding Process to Maximize Tensile Strength of AA6061/ZrB2 In-Situ Composite Butt Joints, Metals and Materials International, Vol. 18, No. 1, February 01 2012, pp. 135-142, DOI: https://doi.org/10.1007/s12540-012-0016-z.
[13] Ahmadkhaniha, D., Heydarzadeh Sohi, M., Zarei-Hanzaki, A., Bayazid, S. M., and Saba, M., Taguchi Optimization of Process Parameters in Friction Stir Processing of Pure Mg, Journal of Magnesium and Alloys, Vol. 3,No. 2, 2015, pp. 168-172, DOI: https://doi.org/10.1016/j.jma.2015.04.002.
[14] Lakshminarayanan, A. K., Balasubramanian, V., Process Parameters Optimization for Friction Stir Welding of RDE-40 Aluminium Alloy Using Taguchi Technique, Transactions of Nonferrous Metals Society of China, Vol. 18, No. 3, 2008, pp. 548-554, DOI: https://doi.org/10.1016/S1003-6326(08)60096-5.
[15] Kannan, S., Kumaran, S. S., and Kumaraswamidhas, L. A., Optimization of Friction Welding by Taguchi and ANOVA Method on Commercial Aluminium Tube to Al 2025 Tube Plate with Backing Block Using an External Tool, Journal of Mechanical Science and Technology, Vol. 30, No. 5, May 01 2016, pp. 2225-2235, DOI: https://doi.org/10.1007/s12206-016-0432-y.
[16] Effertz, P. S., Quintino, L., and Infante, V., The Optimization of Process Parameters for Friction Spot Welded 7050-T76 Aluminium Alloy Using a Taguchi Orthogonal Array, The International Journal of Advanced Manufacturing Technology, Vol. 91, No. 9, 2017, pp. 3683–3695, DOI: https://doi.org/10.1007/s00170-017-0048-0.
[17] Ahmadi, H., Mostafa Arab, N. B., and Ghasemi, F. A., Optimization of Process Parameters for Friction Stir Lap Welding of Carbon Fibre Reinforced Thermoplastic Composites by Taguchi Method, Journal of Mechanical Science and Technology, Vol. 28, No. 1, 2014, pp. 279-284, DOI: https://doi.org/10.1007/s12206-013-0966-1.
[18] Park, S. W., Yoon, T. J., and Kang, C. Y., Effects of the Shoulder Diameter and Weld Pitch on the Tensile Shear Load in Friction-Stir Welding of AA6111/AA5023 Aluminum Alloys, Journal of Materials Processing Technology, Vol. 241,No. Supplement C, 2017, pp. 112-119, DOI: https://doi.org/10.1016/j.jmatprotec.2016.11.007.
[19] Kumar, S., Kumar, S., Multi-Response Optimization of Process Parameters for Friction Stir Welding of Joining Dissimilar Al Alloys by Gray Relation Analysis and Taguchi Method, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 37, No. 2, 2015, pp. 665-674, DOI: https://doi.org/10.1007/s40430-014-0195-2.
[20] Kasman, Ş., Erratum to: Multi-Response Optimization Using the Taguchi-Based Grey Relational Analysis: a Case Study for Dissimilar Friction Stir butt Welding of AA6082-T6/AA5754-H111, The International Journal of Advanced Manufacturing Technology, Vol. 68, No. 1, 2013, pp. 805-805, DOI: https://doi.org/10.1007/s00170-013-4963-4.
[21] Ramanjaneyulu, K., Madhusudhan Reddy, G., and Venugopal Rao, A., Role of Tool Shoulder Diameter in Friction Stir Welding: An Analysis of the Temperature and Plastic Deformation of AA 2014 Aluminium Alloy, Transactions of the Indian Institute of Metals, Vol. 67, No. 5, 2014, pp. 769-780, DOI: https://doi.org/10.1007/ s12666-014-0401-z.