• Home
  • Azam Ghasemi

    List of Articles Azam Ghasemi


  • Article

    1 - Experimental and Numerical Analysis of Titanium/HA FGM for Dental Implantation
    International Journal of Advanced Design and Manufacturing Technology , Issue 1 , Year , Winter 2017
    FGM dental implants are a very good alternative with respect to homogenous implants. In this study by focusing on mechanical property as one of the most important factors in implant design, the static behaviour of Ti/Nanostructure HA (hydroxyapatite) FGM dental implant More
    FGM dental implants are a very good alternative with respect to homogenous implants. In this study by focusing on mechanical property as one of the most important factors in implant design, the static behaviour of Ti/Nanostructure HA (hydroxyapatite) FGM dental implant has been fabricated and investigated experimentally and numerically. At the first step, the nanostructure hydroxyapatite powders were synthesized by natural origin. At the second step, the initial powders were cold compacted in order to fabricate Ti/HA FGM samples for 4 different volume fraction exponents (N=1/3, 2/3, 1, 2). Then the compacted powders have been sintered using a vacuum furnace, in which compressive strength of each particular sample was finally assessed. A three-dimensional geometrical model of FGM dental implant system and surrounding bone was created by using the macro programming language in ANSYS software and then finite element analysis under static forces was performed. Finally the experimental results strength tests were compared with numerical solutions. According to the results, the FGM dental implants made of Ti/HA under static forces were sufficiently safe. As a result, FGM sample with volume fraction exponent of N=2/3 was chosen as the best sample. Manuscript profile

  • Article

    2 - Nonlinear bending analysis of thick functionally graded plates based on third-order shear deformation plate theory
    International Journal of Advanced Design and Manufacturing Technology , Issue 2 , Year , Spring 2014
    In this paper the nonlinear bending analysis of thick functionally graded plates subjected to mechanical loading is studied. The formulation is derived based on the third-order shear deformation plate theory and Von Kármán type non-linearity. Young’s modulus is assumed More
    In this paper the nonlinear bending analysis of thick functionally graded plates subjected to mechanical loading is studied. The formulation is derived based on the third-order shear deformation plate theory and Von Kármán type non-linearity. Young’s modulus is assumed to vary according to a power law distribution in terms of the volume fractions of the constituents. The principle of virtual work is used to obtain the weak form of the governing differential equations. The most important advantage of employed numerical solution in this work is that the whole plate is considered as one element and the components of displacement field are interpolated over the entire domain, then a hierarchical finite-element scheme is developed. The validity and the accuracy of the method are verified by comparisons made with other solutions. In addition; the effect of numbers of interpolation functions on the accuracy of results is studied. It is concluded that accurate results are obtained even by few numbers of interpolation functions. Manuscript profile

  • Article

    3 - کنترل کننده تطبیقی-عصبی در جراحی رباتیک قلب در حال تپش بر اساس مدل ارتجاعی-چسبندگی بافت
    Journal of Intelligent Procedures in Electrical Technology , Issue 1 , Year , Summer 2014
    در این مقاله، مشکل جبران حرکات قلب در سه راستا با استفاده از طراحی کنترل کننده‌ی موازی نیرو و موقعیت حل می‌گردد. کنترل کننده موقعیت با استفاده از روش تطبیقی-موجک جهت جبران حرکات سه بعدی بافت و مواجهه با نامعینی‌های ساختاری در معادلات ربات، طراحی می‌گردد و کنترل نیرو نیز More
    در این مقاله، مشکل جبران حرکات قلب در سه راستا با استفاده از طراحی کنترل کننده‌ی موازی نیرو و موقعیت حل می‌گردد. کنترل کننده موقعیت با استفاده از روش تطبیقی-موجک جهت جبران حرکات سه بعدی بافت و مواجهه با نامعینی‌های ساختاری در معادلات ربات، طراحی می‌گردد و کنترل نیرو نیز به صورت ضمنی، انجام می‌شود. مدل برهم کنش بافت قلب و ابزار نهائی ربات، به صورت ارتجاعی- چسبندگی در نظر گرفته شده است. در اثبات پایداری کنترل کننده، از قانون لیاپانف و لم باربالت استفاده می‌شود. بدین منظور یک تابع لیاپانف مثبت معین در نظر گرفته شده و در اثبات پایداری استفاده شده است. شبیه سازی‌ها بر روی ربات D2M2 صورت گرفته و نشان‌دهنده کارایی کنترل کننده می‌باشد. تست مقاوم بودن عملکرد نیز در مواجه با بافت‌های مختلف انجام و نتایج ارائه گردیده است. Manuscript profile

  • Article

    4 - Experimental Study of the Effect of Laser-Cutting Process Parameters on Heat Distribution and Cutting Edge Quality of Steel Sheets
    Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering , Issue 1 , Year , Winter 2018
    This study aimed to evaluate Laser-cutting process of Mild Steel St37 sheets with two different thicknesses. In order to evaluate the quality of cutting edge and the depth of the area affected by the heat, several tests were conducted to determine the effect of paramete More
    This study aimed to evaluate Laser-cutting process of Mild Steel St37 sheets with two different thicknesses. In order to evaluate the quality of cutting edge and the depth of the area affected by the heat, several tests were conducted to determine the effect of parameters such as Laser power, Laser beam movement speed and pressure of axillary gas on the quality of cutting edge and the depth of the area affected by the heat. The results showed that three main parameters of Laser beam movement speed, the pressure of axillary gas and Laser power can affect surface roughness and depth of the area affected by the heat. The value for each of these main parameters should be optimized based on other parameters and in a predetermined range in order to reach optimal conditions and edge quality and to use the interaction of these parameters to determine the final optimal conditions. Manuscript profile

  • Article

    5 - Analysis of Bending and Buckling of Circular Porous Plate Using First-Order Shear Deformation Theory
    Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering , Issue 1 , Year , Autumn 2013
    Porous materials are lightweight, flexible and resistant to hairline cracks, so today with the development of technology porous structure produced for use in various industries. This structure widely use in beams, plates and shells. The purpose of this paper is to inves More
    Porous materials are lightweight, flexible and resistant to hairline cracks, so today with the development of technology porous structure produced for use in various industries. This structure widely use in beams, plates and shells. The purpose of this paper is to investigate the effect of porosity in axial symmetry in bending and buckling load sheet for analysis. For this purpose, a circular plate with simply supported edges under uniform radial pressure and vertical pressure distribution is investigated. Mechanical properties of porous sheet are isotropic and variable in thickness direction is considered. Right movement is extended in accordance with the first order shear deformation theory. Then, using the principle of virtual work and applying the calculus of variations, differential equations, and equations for bending sheet stability are achieved, continue using these equations and Galerkin method, bending and buckling of the sheet is calculated. Buckling load is calculated for all types of porosity can be observed with increasing porosity, critical buckling load decreases. Buckling load is calculated for all types of porosity can be observed with increasing porosity, critical buckling load decreases. The distribution of bending stress and deflection analysis sheet was obtained. To verify the results of bending and buckling of the sheet, the results were compared with homogeneous sheet with classical theory. Manuscript profile