• Home
  • Somayeh Majidi

    List of Articles Somayeh Majidi


  • Article

    1 - Effects of Active Material Particles Size Distribution on the Fabrication of TiNb2O7 Electrode Used in Lithium-Ion Batteries
    Journal of Advanced Materials and Processing , Issue 4 , Year , Summer 2021
    In this study effect of active material particle size distribution (PSD) on TiNb2O7 electrodes and their performance were evaluated. To determine the effect of PSD, have focused on the performance of the electrode, which is mainly affected by the performance of individu More
    In this study effect of active material particle size distribution (PSD) on TiNb2O7 electrodes and their performance were evaluated. To determine the effect of PSD, have focused on the performance of the electrode, which is mainly affected by the performance of individual particles and their interaction. For this purpose, TiNb2O7 was successfully synthesized by mechanochemical method and post-annealing, as an anode material for lithium-ion batteries. Phase identifications and microstructure characterization was carried out by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) to identify the phases and evaluate the morphology of the synthesized samples. The charging and discharging tests were conducted using a battery-analyzing device for evaluating the electrochemical properties of the fabricated anodes. Eventually, at faster charging rates, the electrochemical performance was found to be improved when smaller active material particle size distribution was used. Differences in particles size distributions resulted in variable discharge capacities so that the sample with particle size higher than 25 microns (>25 μm) showed a capacity of 19 mAh/g after 179 cycles, which had a lower capacity than their sample with particle size less than 25 microns (<25 μm). The final capacity of the sample with a particle size less than 25 microns is 72 mAh/g. Manuscript profile

  • Article

    2 - Palladium-Cobalt on Reduced Graphene Oxide as an Electro-catalyst for Ethylene Glycol Oxidation in Alkaline Medium: Synthesis and Electrochemical Performance
    Journal of Advanced Materials and Processing , Issue 4 , Year , Summer 2021
    In this study, Pd-Co alloying nanoparticles supported on reduced graphene oxide (rGO) were synthesized and characterized by various techniques such as field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray (EDX), X-ray diffraction (XRD), and Raman More
    In this study, Pd-Co alloying nanoparticles supported on reduced graphene oxide (rGO) were synthesized and characterized by various techniques such as field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray (EDX), X-ray diffraction (XRD), and Raman spectra. The prepared Pd-Co/rGO nanoparticle was used as the electro-catalyst for the ethylene glycol (EG) oxidation reaction in the alkaline medium. The activity of Pd-Co/rGO was evaluated in the half-cell by cyclic voltammetry (CV) technique. Results demonstrate that Pd-Co/rGO electro-catalyst has higher performance compared to simple alloyed-based Pd electro-catalysts for EG electro-oxidation in alkaline media. Pd-Co/rGO catalyst showed well-defined peaks for the EG oxidation reaction after 150 CV cycle. This result indicated that Pd-Co/rGO electro-catalyst is still active in EG oxidation reaction even after 150 CV cycles, suggesting high poisoning toleration of Pd-Co/rGO electro-catalyst in the EG oxidation reaction. The results of electrochemical experiments indicated that Pd-Co/rGO could be practically used as the high-efficiency anode electro-catalyst for the EG oxidation reaction in alkaline media. Manuscript profile