List of Articles Ahmed SAHLI


  • Article

    1 - Stiffeners Mechanical Effect Analysis by Numerical Coupling
    Journal of Solid Mechanics , Issue 2 , Year , Spring 2020
    Given any structure, we seek to find the solution of mechanical problem as precisely and efficiently as possible. Within this condition, the BEM is robust and promising development, standing out in the analysis of cases with occurrence of large stress gradients, as in p More
    Given any structure, we seek to find the solution of mechanical problem as precisely and efficiently as possible. Within this condition, the BEM is robust and promising development, standing out in the analysis of cases with occurrence of large stress gradients, as in problems of fracture mechanics. Moreover, in BEM the modeling of infinite means is performed naturally, without the use of approximations. For methods involving domain integration, such as FEM, this is not possible, as models with high number of elements are usually adopted and their ends are considered flexible supports. This paper deals with the development of numerical models based on the BEM for mechanical analysis of stiffened domains. In the modeling of hardeners, immersed in a medium defined by the BEM, we tried to use both the FEM, already present in the literature, and the BEM 1D, being a new formulation. The objective was to perform the coupling of BEM with FEM and BEM 1D for elements of any degree of approximation, evaluating both isotropic and anisotropic medium. In addition, a complementary objective was to verify the effects of the adoption of different discretization and approximation degrees on the stiffeners. However, the coupling with the BEM 1D leaded to more stable results and better approximations. It was observed that the FEM results were instable for many results, mainly in the quadratic approximations. When the approximation degree rises, the methods tend to converge to equivalent results, becoming very close in fourth degree approximation. Lastly, it was observed stress concentration in the stiffeners ends. In these regions, the discretization and the approximation degree have large influence to the numerical response. Manuscript profile