Subject Areas : Electrical Engineering
Mohammad Bagher Nasrollahnejad 1 , Parviz Keshavarzi‎ 2
1 - Department of Electrical Engineering, Gorgan Branch, Islamic Azad University, Gorgan, Iran
2 - Electrical and Computer Engineering Department, Semnan University, Semnan, Iran
Keywords:
Abstract :
[1] S. Raghavan, I. Stolichnov, N. Setter, et al., "Long-term retention in organic ferroelectric-graphene memories," Appl. Phys. Lett. 100 (2) (2012): 023507.
[2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, "Electric field effect in atomically thin carbon films," Science. 306 (2004): 666-669.
[3] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, "Superior thermal conductivity of single-layer graphene," Nano Lett. 8(3) (2008): 902-907.
[4] Y. M. Lin, A. Valdes-Garcia, S. J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, K.A. Jenkins, "Wafer-scale graphene integrated circuit," Science 332 (6035) (2011): 1294-1297.
[5] A. K. Geim, K. S. Novoselov, "The rise of graphene," Nat. Mater. 6 (2007): 183.
[6] T. Feng, D. Xie, H. Zhao, G. Li, J. Xu, T. Ren, H. Zhu, "Ambipolar/unipolar conversion in graphene transistors by surface doping," Appl. Phys. Lett. 103(19) (2013): 193502.
[7] F. Banhart, J. Kotakoski, A. V. Krasheninnikov," Structural defects in graphene," ACS Nano. 5(1) (2011): 26-41.
[8] I. Zsoldos, "Effect of topological defects on graphene geometry and stability," Nanotechnol. Sci. Appl. 3 (2010): 101.
[9] L. D. Carr, M. T. Lusk, "Defect engineering: Graphene gets designer defects," Nat. Nanotechnol. 5(5), (2010): 316-317.
[10] L. Vicarelli, S. J. Heerema, C. Dekker, H. W. Zandbergen, "Controlling defects in graphene for optimizing the electrical properties of graphene nanodevices," ACS Nano. 9(4) (2015): 3428-3435.
[11] H. Owlia, P. Keshavarzi, "Locally Defect-Engineered Graphene Nanoribbon Field-Effect Transistor," IEEE Trans. Electron Dev. 63(9) (2016): 3769-3775.
[12] H. Xu, D. Zhang, L. Chen, "Effect of defect on electronic properties of zigzag graphene nanoribbons," J. Cent. South Univ. 43(9) (2012): 3510-3516.
[13] K. L. Wong, M. A. S. Mahadzir, W. K. Chong, M. S. Rusli, C.S. Lim and M. L. P., Tan, "Graphene nanoribbon simulator of vacancy defects on electronic structure," IJEEI. 6(3) (2018): 265-273.
[14] M. Poljak, E. B. Song, M. Wang, T. Suligoj, K. L. Wang, "Influence of edge defects, vacancies, and potential fluctuations on transport properties of extremely scaled graphene nanoribbons," IEEE. Trans. Electron Dev. 59(12) (2012): 3231-3238.
[15] I. Deretzis, G. Fiori, G. Iannaccone, G. Piccitto, A. La Magna, "Quantum transport modeling of defected graphene nanoribbons," Physica E: Low-dimensional Systems and Nanostructures Phys. E: Low-Dimens. Syst. Nanostruct. 44 (2012): 981-984.
[16] H. Zhang,G. Lee, K. Cho, "Thermal transport in graphene and effects of vacancy defects," Phys. Rev. B. 84(11) (2011): 115460.
[17] D. Orlikowski, M. Buongiorno Nardelli, J. Bernholc, C. Roland, "Ad-dimers on strained carbon nanotubes: A new route for quantum dot formation," Phys. Rev. Lett. 83(20) (1999): 4132.
[18] H. Zeng, J. Zhao, J. W. Wei, H. F. Hu, Effect of N doping and Stone-Wales defects on the electronic properties of graphene nanoribbons, Eur. Phys. J. B. 79(3) (2011): 335-340.
[19] A. Nazari, R. Faez, H. Shamloo," Improving ION/IOFF and sub-threshold swing in graphene nanoribbon field-effect transistors using single vacancy defects," Superlattices Microstruct. 86, (2015): 483-492.
[20] D.G. Kvashnin, L. A. Chernozatonskii, "Impact of symmetry in transport properties of graphene nanoribbons with defects," Appl. Phys. Lett. 105(8) (2014): 083115.
[21] J. Ma, D. Alfe, A. Michaelides, E. Wang, "Stone-Wales defects in graphene and other planar sp2-bonded materials," Phys. Rev. B. 80(3) (2009): 033407.
[22] S. Bhowmick, U. V. Waghmare, "Anisotropy of the Stone-Wales defect and warping of graphene nanoribbons: A first-principles analysis," Phys. Rev. B. 81(15) (2010): 155416.
[23] Y. Ren, K. Q. Chen, "Effects of symmetry and Stone–Wales defect on spin-dependent electronic transport in zigzag graphene nanoribbons," J. Appl. Phys. 107(4) (2010) 044514.
[24] J. Zhao, H. Zeng , B. Li, J. Wei, J. Liang, "Effects of stone-wales defect symmetry on the electronic structure and transport properties of narrow armchair graphene nanoribbon," J . Chem. Phys. 77 (2015): 8-13.
[25] M. T. Lusk, D. T. Wu, L. D Carr, "Graphene nanoengineering and the inverse Stone-Thrower-Wales defect," Phys. Rev. B. 81(15) (2010): 155444.
[26] M. T Lusk, L. D Carr, "Nanoengineering defect structures on graphene," Phys. Rev. Lett. 100 (17) (2008): 175503.
[27] A. P. Sgouros, G. Kalosakas, M. M. Sigalas, K. Papagelis, "Exotic carbon nanostructures obtained through controllable defect engineering," RSC Advances. 5(50) (2015): 39930-39937.
[28] S. Fotoohi, M. K. Moravvej-Farshi, R. Faez, "Electronic and transport properties of monolayer graphene defected by one and two carbon ad-dimers," Appl. Phys. A. 116(4) (2014): 2057-2063.
[29] S. Fotoohi, M. K. Moravvej-Farshi, R. Faez, "Role of 3D-paired pentagon–heptagon defects in electronic and transport properties of zigzag graphene nanoribbons," Appl. Phys. A. 116(1) (2014): 295-301.
[30] M. B. Nasrollahnejad, P. Keshavarzi, "Inverse Stone Thrower Wales defect and transport properties of 9AGNR Double-gate Graphene Nanoribbon FETs," J. Cent. South. Univ. 26(11) (2019): 2943-2952.
[31] L. Kou, C. Tang, W. Guo, C. Chen, "Tunable magnetism in strained graphene with topological line defect," ACS Nano. 5(2) (2011): 1012-1017.
[32] S. Okada, T. Kawai, K. Nakada, "Electronic structure of graphene with a topological line defect," J. Phys. Soc. Jpn .80(1) (2011): 013709.
[33] J. H. Chen, G. Autès, N. Alem, F. Gargiulo, A. Gautam, M. Linck, C. Kisielowski, O. V. Yazyev, S.G. Louie, A. Zettl, "Controlled growth of a line defect in graphene and implications for gate-tunable valley filtering," Phys. Rev. B. 89(12) (2014): 121407.
[34] J. Lahiri, Y. Lin, P. Bozkurt, I. I. Oleynik, M. Batzill, "An extended defect in graphene as a metallic wire," Nat. Nanotechnol. 5(5) (2010): 326 .
[35] M. H. Tajarrod, H. Rasooli Saghai, "High Ion/Ioff current ratio graphene field effect transistor: the role of line defect," Beilstein J. Nanotechnol. 6(1) (2015): 2062-2068.
[36] D. Gunlycke, C. T. White, "Graphene valley filter using a line defect," Phys. Rev. Lett. 106(13) (2011): 136806.
[37] D. A. Bahamon, A. L. C. Pereira, P. A. Schulz, "Third edge for a graphene nanoribbon: a tight-binding model calculation," Phys. Rev. B. 83(15) (2011):155436.
[38] H. Owlia, P. Keshavarzi, "Investigation of the novel attributes of a double-gate graphene nanoribbon FET with AlN high-κ dielectrics," Superlattices Microstruct. 75 (2014): 613-620.
[39] M. B. Nasrollahnejad, P. Keshavarzi, "Inverse Stone Throwers Wales defect and enhancing ION/IOFF ratio and subthreshold swing of GNR transistors," Eur. Phys. J. Appl. Phys. 86(2) (2019): 2.
[40] H Owlia, P Keshavarzi, M. B Nasrollahnejad, “Effects of Stone - Wales Defect Position in Graphene Nanoribbon Field - Effect Transistor”, J. Nano. Elec. Phys. 9(6) (2017): 06008.
[41] S. Datta, "Quantum Transport: Atom to Transistor" (Cambridge University Press, New York, 2005)
[42] F. Hao, D. Fang, Z. Xu, "Mechanical and thermal transport properties of graphene with defects," Appl. Phys. Lett. 99(4) (2011): 041901.
[43] M. Poljak, and T. Suligoj, "Quantum transport analysis of conductance variability in graphene nanoribbons with edge defects." IEEE Trans. Electron Dev. 63(2) (2015): 537-543.
[44] F. Sols, F. Guinea, A. H, Castro Neto, "Coulomb blockade in graphene nanoribbons," Phys. Rev. Lett. 99(16) (2007): 166803.
[45] D. Gunlycke, D. A. Areshkin, C. T. White, "Semiconducting graphene nanostrips with edge disorder," Appl. Phys. Lett. 90(14) (2007): 142104.
[46] J. H. Chen, C. Jang, S. D. Xiao, M. Ishigami, M. S. Fuhrer, "Intrinsic and extrinsic performance limits of graphene devices on SiO2," Nat. Nanotechnol. 3(4) (2008):206-209.