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Abstract – Defect engineering in nonmaterials could be used to modify the properties of 
materials for various practical applications. In this paper, the impact of linear arrangement of 
ISTW (LA-ISTW) defect and its position on the transport properties of grapheme nanoribbon 
transistors is investigated. The analysis show that creating the LA-ISTW defect with a certain 
density in the proper position of the channel length leads to increase the bandgap, suppress 
ambipolar conduction and provides the higher on-off current ratio and therefore the structure with 
LA-ISTW defect in the proper defect position and the specified defect density has better 
performance than conventional structure. The results have also demonstrated the defect 
engineering potential on modifying the electronic transport properties of GNR FETs. Simulations 
has been done based on self-consistent solution of full 3D Poisson and Schrodinger equations within the non-
equilibrium Green’s function formalism. Graphene nanoribbons with non-passivated edges are used in the 
transistor channel. 
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1. Introduction 

Graphene known as a 2D semi-metallic material 

arranged in honeycomb lattice structure [1]. Its excellent 

properties such as high carrier mobility [2], superior 

thermal [3] and electrical conductivity have led to progress 

of GNR based devices [4]. So graphene is an appropriate 

material for achieving future generation transistors with 

high efficiency and speed. Despite these advantages, strong 

ambipolarity effect and lack of band gap in graphene 

structures led to some challenges in digital electronic 

applications [5-6]. To get better electronic transport 

properties of the graphene, the graphene lattice structures 

have to be changed. Introducing the topological defects can 

also change the intrinsic gap of graphene and consequently 

improve electronic transport properties of the graphene 

nanoribbon (GNR) devices [7-15].  

   There are various types of structural defects in 

graphene sheets, such as adatoms, vacancies, Stone-Wales 

(SW) and inverse Stone Throwers Wales (ISTW) [16-24].  

Inverse Stone Thrower Wales (ISTW) defect which 

predicted earlier as a defect on graphene by Lusk et al. [25], 

is formed by adding two extra carbon atoms to 6-ring (see 

Figure 1 (a) [26]. ISTW defects can be produced by means 

of microscope electron, ion irradiation and chemical 

methods [7, 27]. There are few investigations about the 

impact of ISTW defect on graphene structures [25-26, 28-

29]. Fotoohi et al. [28-29] investigated electronic and 

transport properties of zigzag and armchair graphene 

nanoribbons in a two terminal structure in presence of 

ISTW defect.  We also submitted a paper which in the 

symmetry and position impact of ISTW defect on transport 

properties of DG-GNRFETs was investigated [30]. These 

investigations confirm the possibility of developing ISTW 

defects on graphene layer and therefore the possibility of 

defect engineering. 

   Defects can also be linearly aligned to create 

extended line defects (ELDs). Extended line defects can be 

effective to direct charge transport in graphene structures 

[31-36]. Magnetic properties of graphene with “5-5-8” line 

defect were investigated by Kou et al. [31]. They realized a 

ground state with weak ferromagnetic behavior and spin-
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Figure 1: (a) ISTW defect and (b) three parallel linear arrangements 

of ISTW defects in channel length. 
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different defect densities. The 1.5% defects density at the 

center significantly increases the bandgap up to 0.87eV. So 

ults for the 

rest of simulations. Although the results also show that only 

increasing the defect densities near drain contact has no 
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(c) 

Figure 3: LDOS for (a) the C

-ISTW defect in the left position of the channel for the three defect 

densities of (b) 0.5%, (c) 1% and (d) 1.5%. (VGS=0,VDS=0). In the white 

regions, the LDOSs are very high and those decrease as the regions 

become darker.  

(a) 

(b) 

(c) 

Figure 4: LDOS for DG

center and right position of the channel for the three defect densities of (a,d) 

0.5%, (b,e) 1% and (c,f) 1.5%.(VGS=0,VDS=0).
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densities of (b) 0.5%, (c) 1% and (d) 1.5%. (VGS=0,VDS=0). In the white 

regions, the LDOSs are very high and those decrease as the regions 

LDOS for DG-AGNRFET with LA

center and right position of the channel for the three defect densities of (a,d) 
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LDOS for (a) the C-AGNRFET and DG

ISTW defect in the left position of the channel for the three defect 

densities of (b) 0.5%, (c) 1% and (d) 1.5%. (VGS=0,VDS=0). In the white 

regions, the LDOSs are very high and those decrease as the regions 

(d) 

(e) 

(f) 

AGNRFET with LA

center and right position of the channel for the three defect densities of (a,d) 

0.5%, (b,e) 1% and (c,f) 1.5%.(VGS=0,VDS=0). 
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(b) 

(d) 

AGNRFET and DG-AGNRFET with 

ISTW defect in the left position of the channel for the three defect 

densities of (b) 0.5%, (c) 1% and (d) 1.5%. (VGS=0,VDS=0). In the white 

regions, the LDOSs are very high and those decrease as the regions 

(d)

(e)

(f)

AGNRFET with LA-ISTW defect in the 

center and right position of the channel for the three defect densities of (a,d) 

AGNRFET with 

ISTW defect in the left position of the channel for the three defect 

densities of (b) 0.5%, (c) 1% and (d) 1.5%. (VGS=0,VDS=0). In the white 

regions, the LDOSs are very high and those decrease as the regions 

ISTW defect in the 

center and right position of the channel for the three defect densities of (a,d) 
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   Adding such defects to the center of the channel 

length creates a big potential barrier in carrier transmission 

direction and leads to drop the transistor current. Figure 3 

and Figure 4 also show that the regions with defect along 

the channel create localized states which trap carriers in 

transport direction. These states produce elastic scattering 

centers and reduce near-ballistic transport along the channel 

[11]. However, the bandgap increasing due to the defects is 

local and this bandgap only increases in the defective 

regions. Therefore, to investigate effects of defects on 

transport properties across the channel length, transmission 

spectrum is also used. 

   Transmission spectrum for the conventional 

structure and the structures with defect were drawn in 

Figure 5. The results show that the transport gap [43] of 

conventional, left, center and right LA-ISTW defected 

device are 0.26 eV, 0.28 eV, 0.24eV and 0.41eV, 

respectively. As shown in Figure 5, introducing LA-ISTW 

defects in AGNR channel near the drain contact (right side 

of the channel length) increases transport gap and 

consequently switching performance of transistor is 

improved. The observed transport gap isn’t a band gap. 

Different reasons have been given for the transport gap 

formation in the graphene structures, such as Coulomb 

blockade effect in quantum dots [44], Anderson localization 

caused by edge irregularities [45], and a penetrance driven 

metal-insulator transition. Figure 5 also shows that T(E) has 

quantized in conventional structure. The quantization of 

T(E) shows carriers transmit by dissimilar separate modes. 

However it has not quantized in defected structures. This 

may be due to the asymmetry caused by the defects in these 

structures. For the conventional structure, the first flat 

surface in T(E) profiles extended to 0.3eV above and -

0.4eV below the Fermi level. However, for the device with 

LA-ISTW defect near drain contact, the first flat surface of 

transmission is removed and one transmission valley is 

created nearly 0.21eV. This is due to the generation of 

strong carrier back-scattering as a result of that the quantum 

transport channel is completely stopped. In the absence of 

back-scattering effect, charge carriers can pass micrometer 

distances before trying a scattering happening [46]. When 

defect is located at the center or near the source, 

transmission T(E) significantly reduces and led to more 

reduction of ON current in transistor. The output 

characteristics of DG-AGNRFET in the presence of LA-

ISTW defect in three different locations along the channel 

are all shown in Figure 6. The results indicate that adding 

the defects in the channel leading to decreasing the ON 

current. This decrement is minimum when defect is close 

to drain and is maximum when defect is in the middle of 

the channel. 

 
(a) 

 
(b) 

Figure 5:  The  transmission  T(E)  as  a  function  of  

energy  at various locations  of  LA-ISTW defect when  the device  

is  in  the OFF  state(defect density is 1.5%)(a)main plot and (b)a 

magnification view of the center side of the main plot. 

 

 

 

 
Figure 6: Drain current ID versus VDS characteristics for the 

defectless-DG-AGNRFET and defected-DG-AGNRFET (VGS = 0.5 V). 



Journal of Applied Dynamic Systems and Control, Vol.3, No.1, 2020: 17-24                       

 
21 

 

 

 
Figure 7: Drain  current  ID  versus  gate  voltage  VG  

characteristics  for  the  conventional DG-AGNRFET and defected-

DG-AGNRFET. The OFF and ON states respectively correspond to the 

gate voltages VG=0.0 and VG=0.5 V for the same drain voltage VD=0.5 V. 

 

   Figure 7 shows transfer characteristics of the DG-

AGNRFET in the presence LA-ISTW defects. As shown in 

Figure 7; there is a significant ambipolar behavior in the 

vicinity of the OFF state leading to high leakage current in 

transistor. Presence of these defects in the center of the 

channel also reduces electrical current and increases the 

bandgap. Its high bandgap created in mid-channel leads to 

loss of controllability drain current by gate voltages, and 

consequently more fluctuations of ID-VGS characteristics. 

Adding such defects near the drain contact significantly 

reduce ambipolar conduction and consequently leakage 

current is also reduced. As a result, in this case, off current 

is 20 times smaller than that in the conventional structure 

and accordingly on/off current ratio increases and when 

defects are located near drain contact, its value is 4 times 

bigger than that in conventional structure. Therefore, the 

structure with defect added near the drain contact, has a 

higher on current and lower leakage current than the 

conventional structure. It confirms that adding LA-ISTW 

defect near drain contact makes transistors appropriate for 

logic applications. Although, increasing the defect densities 

near drain contact had no impact on bandgap (as was shown 

in Figure 4). So, the bandgap increasing due to the defects 

does not affected directly on electrical characteristics and 

the position and the density of these defects is also 

important. 

   The intrinsic voltage gain, AV=gm/gd, is an 

appropriate criteria for assessing analogue applications of 

such devices. In order to extract intrinsic voltage gain, 

parameters of transconductance (gm) and output 

conductance (gd) need to be considered. According to the 

results obtained from Figures 8 and 9, gm and gd both are 

reduced in structure with defect. Intrinsic voltage gain 

characteristic is also shown in Figure 10 as a function of 

VDS. As depicted in Figure 10, in some bias voltages such 

VDS=0.3V, AV from 0.27 in conventional structure 

increased to 6.5 for structure with defect in center and for 

VDS=0.8, AV from 0.18 in conventional structure 

increased to 1.83 for structure with defect in the right side 

of channel. 

 
Figure 8:Variation of transconductance gm with VG at VDS = 0.5 

V. 

 

 

 
Figure 9:Variation of gd with drain voltage Vd at VGS = 0.5 V. 
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Figure 10: Variation of AV as a function of VDS for VG = 0.5 V.
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