Effects of Active Material Particles Size Distribution on the Fabrication of TiNb2O7 Electrode Used in Lithium-Ion Batteries
Subject Areas : Materials synthesis and charachterizationTouraj Adhami 1 , Reza Ebrahimi-Kahrizsangi 2 , Hamid Reza Bakhsheshi Rad 3 , Somayeh Majidi 4 , Milad Ghorbanzadeh 5
1 - Advanced Materials Research Center, Materials Engineering Department, Najafabad Branch, Islamic Azad University, Najafabad, Iran
2 - Advanced Materials Research Center, Materials Engineering Department, Najafabad Branch, Islamic Azad University, Najafabad, Iran
3 - Advanced Materials Research Center, Materials Engineering Department, Najafabad Branch, Islamic Azad University, Najafabad, Iran
4 - Department of Chemistry, Najafabad Branch, Islamic Azad University, Najafabad, Iran
5 - Materials and Energy Research Center, Karaj, Iran
Keywords:
Abstract :
[1] Y. Liu, Y. Yang, “Recent progress of TiO2-based anodes for Li ion batteries”, Journal of Nanomaterials, vol. 2016, 2016, pp. 1-15.
[2] S. K. Balasingam, M. Kundu, B. Balakrishnan, H. Kim, A. M. Sevensson, K. Jayasayee, “Hematite microdisks as an alternative anode material for lithium-ion batteries”, Materials Letters, vol. 247, 2019, pp. 163-166.
[3] S. Li, X. Cao, C. N. Schmidt, Q. Xu, E. Uchaker, Y. Pei, G. Cao, “TiNb2O7/graphene composites as high-rate anode materials for lithium/sodium ion batteries”, Journal of Materials Chemistry A, vol. 4, 2016, pp. 4242-4251.
[4] X. Xia, Sh. Deng, Sh. Feng, J. Wu, J. Tu, “Hierarchical porous Ti2Nb10O29 Nanospheres as superior anode materials for lithium-ion storage”, Journal of Materials Chemistry A, vol. 5 2017, pp. 21134-21139.
[5] D. Pham-cong, J. Kim, V. T. Tran, S.J. Kim, S. Jeong, J. Choi, Ch. Cho, “Electrochemical behavior of interconnected Ti2Nb10O29 nanoparticles for high-power Li-ion battery anodes”, Electrochimica Acta, vol. 236, 2017, pp. 451-459.
[6] G. Zhu, Y. Wang, Y. Xia, “Ti-based compounds as anode materials for Li-ion batteries”, Energy & Environmental Science, vol. 5, 2012, pp. 6652-6667.
[7] D. Aurbach, B. Markovsky, I. Weissman, E. Levi, Y. Ein-Eli, “On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries”, Electrochimica Acta, vol. 45, 1999, pp. 67-86.
[8] B. Michalak, H. Sommer, D. Mannes, A. Kaestner, T. Brezesinski, J. Janek, “Gas Evolution in Operating Lithium-Ion Batteries Studied in Situ by Neutron Imaging”, Scientific Reports, vol. 5, 2015, pp. 1-9.
[9] F. Rçder, S. Sonntag, D. Schrçder, U. Krewer, “Simulating the Impact of Particle Size Distribution on the Performance of Graphite Electrodes in Lithium-Ion Batteries”, Energy Technology, vol. 4, 2016, pp. 1-11.
[10] Zh. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li, H. Cheng, “Graphene Anchored with Co3O4 Nanoparticles as Anode of Lithium-Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance”, ACS Nano, vol. 4, 2010, pp. 3187-3194.
[11] G. T. Feya, Y. G. Chen, H. Kao, “Electrochemical properties of LiFePO4 prepared via ball-milling”, Journal of Power Sources, vol. 189, 2009, pp. 169-178.
[12] Th. Drezen, N. Kwon, P. Bowen, I. Teerlinck, M. Isono, I. Exnar, “Effect of particle size on LiMnPO4 cathodes”, Journal of Power Sources, vol. 189, 2009, pp. 169-178.
[13] T. Adhami, R. Ebrahimi-Kahrizsangi, H. R. Bakhsheshi-Rad, S. Majidi, M. Ghorbanzadeh, F. Berto, “Synthesis and electrochemical properties of TiNb2O7 and Ti2Nb10O29 anodes under various annealing atmospheres”, Metals, vol. 11, 2021, pp. 1-12.
[14] A. R. Madram, R. Daneshtalab, M. R. Sovizi, “Effect of Na+ and K+ co-doping on the structure and electrochemical behaviors of LiFePO4/C cathode material for lithium-ion batteries”, Royal Society of Chemistry, 2016, pp. 101477-101484.
[15] L. Buannic, J. Colin, Lise Daniel, S. Patoux, “Effect of syntheses and post synthetic treatments on mixed titanium niobium oxides for use as negative electrode in high power Li-ion batteries”, Electrochemical Society, 2013.