A Simple and Systematic Approach for Implementing Boundary Conditions in the Differential Quadrature Free and Forced Vibration Analysis of Beams and Rectangular Plates
Subject Areas : Engineering
1 - Young Researchers and Elite Club, Karaj Branch, Islamic Azad University
Keywords:
Abstract :
[1] Bellman R.E., Casti J., 1971, Differential quadrature and long term integrations, Journal of Mathematical Analysis and Applications 34: 235-238.
[2] Bellman R.E., Kashef B.G., Casti J., 1972, Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations, Journal of Computational Physics 10: 40-52.
[3] Bert C.W., Malik M., 1996, Differential quadrature method in computational mechanics: A review, ASME Applied Mechanics Reviews 49: 1-28.
[4] Shu C., 2000, Differential Quadrature and Its Application in Engineering, Springer.
[5] Bert C.W., Wang X., Striz A.G., 1993, Differential quadrature for static and free-vibration analyses of anisotropic plates, International Journal of Solids and Structures 30(13): 1737-1744.
[6] Du H., Liew K.M., Lim M.K., 1996, Generalized differential quadrature method for buckling analysis, Journal of Engineering Mechanics 122: 95-100.
[7] Civalek Ö., 2004, Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns, Engineering Structures 26(2): 171-186.
[8] Zong Z., Zhang Y., 2009, Advanced Differential Quadrature Methods, Chapman & Hall.
[9] Tanaka M., Chen W., 2001, Coupling dual reciprocity BEM and differential quadrature method for time-dependent diffusion problems, Applied Mathematical Modelling 25: 257-268.
[10] Shu C., Yao K.S., 2002, Block-marching in time with DQ discretization: an efficient method for time-dependent problems, Computer Methods in Applied Mechanics and Engineering 191: 4587-4597.
[11] Khalili S.M.R., Jafari A.A., Eftekhari S.A., 2010, A mixed Ritz-DQ method for forced vibration of functionally graded beams carrying moving loads, Composite Structures 92(10): 2497-2511.
[12] Jafari A.A., Eftekhari S.A., 2011, A new mixed finite element-differential quadrature formulation for forced vibration of beams carrying moving loads, ASME Journal of Applied Mechanics 78(1): 011020.
[13] Eftekhari S.A., Jafari A.A., 2012, Numerical simulation of chaotic dynamical systems by the method of differential quadrature, Iranian Journal of Science and Technology, Transaction B 19(5): 1299-1315.
[14] Eftekhari S.A., Jafari A.A., 2012, Vibration of an initially stressed rectangular plate due to an accelerated traveling mass, Scientia Iranica: Transaction B, Mechanical Engineering 19(5): 1195-1213.
[15] Eftekhari S.A., Jafari A.A., 2013, Modified mixed Ritz-DQ formulation for free vibration of thick rectangular and skew plates with general boundary conditions, Applied Mathematical Modelling 37: 7398-7426.
[16] Eftekhari S.A., Jafari A.A., 2013, A simple and accurate mixed FE-DQ formulation for free vibration of rectangular and skew Mindlin plates with general boundary conditions, Meccanica 48: 1139-1160.
[17] Eftekhari S.A., Jafari A.A., 2014, High accuracy mixed finite element-differential quadrature method for free vibration of axially moving orthotropic plates loaded by linearly varying in-plane stresses, Scientia Iranica: Transaction B, Mechanical Engineering 21(6):1933-195.
[18] Bert C.W., Jang S.K., Striz A.G., 1988, Two new approximate methods for analysing free vibration of structural components, American Institute of Aeronautics and Astronautics 26: 612-618.
[19] Jang S.K., Bert C.W., 1989, Application of differential quadrature to static analysis of structural components, International Journal for Numerical Methods in Engineering 28: 561-577.
[20] Wang X., Bert C.W., 1993, A new approach in applying differential quadrature to static and free vibration of beams and plates, Journal of Sound and Vibration 162: 566-572.
[21] Wang X., Bert C.W., Striz A.G., 1993, Differential quadrature analysis of deflection, buckling, and free vibration of beams and rectangular plates, Computers & Structures 48(3): 473-479.
[22] Malik M., Bert C.W., 1996, Implementing multiple boundary conditions in the DQ solution of higher-order PDE’s: application to free vibration of plates, International Journal for Numerical Methods in Engineering 39: 1237-1258.
[23] Tanaka M., Chen W., 2001, Dual reciprocity BEM applied to transient elastodynamic problems with differential quadrature method in time, Computer Methods in Applied Mechanics and Engineering 190: 2331-2347.
[24] Shu C., Du H., 1997, Implementation of clamped and simply supported boundary conditions in the GDQ free vibration analysis of beams and plates, International Journal of Solids and Structures 34(7): 819-835.
[25] Shu C., Du H., 1997, A generalized approach for implementing general boundary conditions in the GDQ free vibration analyses of plates, International Journal of Solids and Structures 34(7): 837-846.
[26] Golfam B., Rezaie F., 2013, A new generalized approach for implementing any homogeneous and non-homogeneous boundary conditions in the generalized differential quadrature analysis of beams, Scientia Iranica: Transaction A, Civil Engineering 20(4): 1114-1123.
[27] Chen W.L., Striz A.G., Bert C.W., 1997, A new approach to the differential quadrature method for fourth-order equations, International Journal for Numerical Methods in Engineering 40: 1941-1956.
[28] Eftekhari S.A., Jafari A.A., 2012, A novel and accurate Ritz formulation for free vibration of rectangular and skew plates, ASME Journal of Applied Mechanics 79(6): 064504.
[29] Wu T.Y., Liu G.R., 1999, The differential quadrature as a numerical method to solve the differential equation, Computational Mechanics 24: 197-205.
[30] Wu T.Y., Liu G.R., 2000, The generalized differential quadrature rule for initial-value differential equations, Journal of Sound and Vibration 233: 195-213.
[31] Wu T.Y., Liu G.R., 2001, Application of the generalized differential quadrature rule to eighth-order differential equations, Communications in Numerical Methods in Engineering 17: 355-364.
[32] Fung T.C., 2001, Solving initial value problems by differential quadrature method-Part 2: second- and higher-order equations, International Journal for Numerical Methods in Engineering 50: 1429-1454.
[33] Fung T.C., 2002, Stability and accuracy of differential quadrature method in solving dynamic problems, Computer Methods in Applied Mechanics and Engineering 191: 1311-1331.
[34] Quan J.R., Chang C.T., 1989, New insights in solving distributed system equations by the quadrature methods, Part I: analysis, Computers & Chemical Engineering 13: 779-788.
[35] Meirovitch L., 1967, Analytical Methods in Vibrations, Macmillan.
[36] Rao S.S., 2007, Vibration of Continuous Systems, John Wiley & Sons, Inc.
[37] Moler C.B., Stewart G.W., 1973, An algorithm for generalized matrix eigenvalue problems, SIAM Journal on Numerical Analysis 10(2): 241-256.
[38] Bathe K.J., Wilson E.L., 1976, Numerical Methods in Finite Element Analysis, Prentic-Hall, Englewood Cliffs.
[39] Leissa A.W., 1973, The free vibration of rectangular plates, Journal of Sound and Vibration 31(3): 257-293.
[40] Eftekhari S.A., Jafari A.A., 2012, High accuracy mixed finite element-Ritz formulation for free vibration analysis of plates with general boundary conditions, Applied Mathematics and Computation 219: 1312–1344.
[41] Bert C.W., Malik M., 1996, The differential quadrature method for irregular domains and application to plate vibration, International Journal of Mechanical Sciences 38(6): 589-606.
[42] Wei G.W., Zhao, Y.B., Xiang, Y., 2002, Discrete singular convolution and its application to the analysis of plates with internal supports, Part 1: Theory and algorithm, International Journal for Numerical Methods in Engineering 55: 913-946.