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 ABSTRACT 

 This paper presents a simple and systematic way for imposing boundary conditions in the 

differential quadrature free and forced vibration analysis of beams and rectangular plates. 

First, the Dirichlet- and Neumann-type boundary conditions of the beam (or plate) are 

expressed as differential quadrature analog equations at the grid points on or near the 

boundaries. Then, similar to CBCGE (direct Coupling the Boundary Conditions with the 

discrete Governing Equations) approach, the resulting analog equations are used to replace 

the differential quadrature analog equations of the governing differential equations at these 

points in order to solve the problem. But, unlike the CBCGE approach, the grid points near 

the boundaries are not treated as boundary points in the proposed approach. In other 

words, the degrees of freedom related to Dirichlet-type boundary conditions are only 

eliminated from the original discrete equations. This simplifies significantly the solution 

procedure and its programming. A comparison of the proposed approach with other 

existing methodologies such as the CBCGE approach and MWCM (modifying weighting 

coefficient matrices) method is presented by their application to the vibration analysis of 

beams and rectangular plates with general boundary conditions to highlight the advantages 

of the new approach. 

                                               © 2015 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 HE differential quadrature method (DQM), which was first introduced by Bellman and his associates [1, 2] in 

the early 1970’s, is an alternative discretization approach for solving directly the governing differential 

equations in engineering and applied sciences. Its main idea is to approximate the derivative of a function at a 

discrete point with respect to a coordinate direction using a weighted linear sum of the function values at all the 

discrete points chosen along that direction [3, 4]. Compared to low-order methods such as the finite element and 

finite difference methods, the DQM can produce better accuracy by using a considerably small number of grid 

points. Another particular advantage of the DQM lies in its ease of use and implementation. Due to the above-

______ 
*
 Corresponding author. Tel.: +98 919 4618599. 

E-mail address: aboozar.eftekhari@yahoo.com (S.A. Eftekhari). 

T   
  

      



375          S. A. Eftekhari     

© 2015 IAU, Arak Branch 

mentioned favorable features, the DQM has been applied extensively to solve various engineering problems. The 

majority of these applications are concerned with static or dynamic problems [5-8]. Recently, the application of the 

DQM has been extended to initial value problems [9-13], where the time-derivatives are discretized using the DQM. 

More recently, the DQM has been successfully combined with other approximate methods such as the Ritz and 

finite element methods and applied to various plate problems of practical interest [14-17]. It has been found that the 

DQM is computationally efficient and is applicable to a large class of initial and/or boundary value problems. 

In spite of above-mentioned advantages, the DQM has its own difficulty in implementation to the differential 

equations with multiple boundary conditions at boundary points, especially for solving fourth-order governing 

differential equations of classical beam and plate problems. When the DQM is employed to solve beam or plate 

problem, the displacement function is expressed as independent variable at any discrete point. But, two boundary 

conditions must be implemented at each discrete boundary point. Therefore, the number of resulting quadrature 

analog equations will be more than the number of the function values to be obtained. There has been a considerable 

effort devoted to overcoming this difficulty. Bert et al. [18] also Jang and Bert [19] proposed a δ-technique to 

impose the first-order derivate boundary conditions. In this technique, the Dirichlet-type boundary conditions are 

exactly discretized while the Neumann-type boundary conditions are approximately satisfied at a small distance δ 

(≈  10
-5

 in dimensionless value) adjacent to the boundary points. The technique may be applied to the solution of 

differential equations with more conditions at one point by choosing more successive δ-points. However, this 

technique may produce unexpected oscillation behavior of the DQM solutions [3, 4]. 

To overcome the difficulties of the δ-technique, Wang and Bert [20], Wang et al. [21], and Malik and Bert [22] 

proposed several approaches to impose the boundary conditions by modification of weighting coefficient matrices 

(say, the MWCM approach). In these approaches, the Dirichlet-type boundary conditions are exactly satisfied while 

the Neumann-type boundary conditions are built into the weighting coefficient matrices of the DQM. These 

approaches have been successfully applied to solve some beam and plate problems with very good accuracy. 

However, as indicated by Wang and Bert [20], there are some major limitations to the application of these 

techniques in implementing general boundary conditions. One limitation is in the implementation of clamped-

clamped (CC) type boundary conditions. As we will show in this paper, the implementation of the FF type boundary 

conditions in the beam problem by this approach also leads to some wrong numerical results. Most importantly, the 

MWCM approach cannot be used to study the free vibration of rectangular plates involving free edges and free 

corners. This is because the free edge and free corner boundary conditions cannot be implemented by modification 

of DQM weighting coefficient matrices. For initial-value problems, Tanaka and Chen [23] have employed this 

technique to incorporate the given initial conditions for transient responses for elastodynamic problems. 

Alternatively, Shu and Du [24, 25] proposed two approaches for implementing general boundary conditions of 

beams and rectangular plates. The first one, which was referred to as the SBCGE (direct Substituting the discrete 

Boundary Conditions into the discrete Governing Equations) approach [24], was shown to be applicable only to 

beams and rectangular plates with simply supported and clamped edge boundary conditions. To tackle this 

limitation, Shu and Du [25] proposed another approach, referred to as the CBCGE (direct Coupling the Boundary 

Conditions with the discrete Governing Equations) approach, for implementing general boundary conditions of the 

beams and rectangular plates. It was shown that the SBCGE and CBCGE approaches remove some drawbacks of the 

δ-technique and produce accurate solutions for beams and plates with clamped and simply supported boundary 

conditions. However, in these approaches, the grid points adjacent to the boundary points are treated approximately 

as the boundary points. Actually, these points are not boundary points but are treated as boundary points. On the 

other hand, the CBCGE approach was shown to have some difficulty when it is applied to the plate problems 

involving free corners. In this case, the results of this approach are very sensitive to the grid point distribution. To 

solve this difficulty, Shu and Du [25] proposed the use of stretched grid points and showed that better accuracy can 

be achieved by the help of this type of grid points. However, their results didn’t show a uniform convergence 

behavior in most cases and in some cases their results showed an oscillatory behavior. Most recently, Golfam and 

Rezaie [26] proposed a new way of implementation of SBCGE approach to bending analysis of beams with 

homogeneous and non-homogeneous boundary conditions. 

On the other hand, the higher-order derivative boundary conditions can be imposed exactly by modifying the 

trial functions to incorporate the degrees of freedom of the higher-order derivatives at the boundary [27]. This 

procedure, in general, is somehow similar to the conventional Ritz method where the trial functions are selected 

such that they satisfy at least the geometric boundary conditions of the problem. Naturally, this procedure carries the 

disadvantages of the conventional Ritz method. For example, the higher order trial functions tend to become 

unstable and, most importantly, it is not possible in general to find trial functions for the method that satisfy all the 

boundary conditions of the problem (both geometric and natural) [28]. 
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In another attempt to solve the kind of differential equations which involve more than one boundary or initial 

conditions at one point, Wu and Liu [29-31] proposed a generalized differential quadrature rule (GDQR). They have 

employed the Hermite interpolation functions as the trial functions to incorporate the boundary/initial conditions 

into the approximate solutions. However, as pointed out by Fung [32], this approach is in fact equivalent to the 

conventional CBCGE approach where the differential quadrature analog equations of the boundary/initial conditions 

are implemented at the boundary/initial point. Alternatively, Fung [32, 33] proposed a modified differential 

quadrature rule to impose the higher-order initial conditions. He showed that this approach is in fact equivalent to 

the approach employed in Wang and Bert [20] where the derivatives initial conditions are incorporated to the 

solution process by modification of weighting coefficient matrices. He also showed that the accuracy and stability of 

the DQM is highly affected by the choice of grid point type and by the way where the initial conditions are 

incorporated. 

In this paper a simple and systematic approach is presented to implement the Dirichlet- and Neumann-type 

boundary conditions in the DQM free and forced vibration analysis of beams and rectangular plates. Similar to the 

CBCGE approach, the two boundary conditions of the beam (or plate) are accurately satisfied at the boundary 

points. But, unlike the CBCGE approach, the grid points adjacent to the boundary points are not treated as the 

boundary points. Compared with the MWCM approach, the present formulation does not produce wrong results for 

free vibration of beams with clamped and/or free edges. Besides, unlike the MWCM approach, the proposed method 

can be easily applied to the plate problems with general boundary conditions. For instance, the case of rectangular 

plates with free edges and free corners can be easily handled by the proposed method. Compared with the CBCGE 

approach, the present formulation is superior since its implementation and programming are easier and simpler. 

Furthermore, the present method can produce much better accuracy than the CBCGE approach for free vibration of 

rectangular plates involving free corners. The obtained numerical solutions are also not very sensitive to the grid 

point distribution. 

2   DIFFERENTIAL QUADRATURE METHOD 

Let ( )  be a solution of a differential equation and 
1 2 3, , ,..., n     be a set of grid points in the η-direction. 

According to the DQM, the rth-order derivative of the function ( )  at any grid point 
i  can be approximated by 

the following formulation [3] 
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where n is the number of grid points in the η-direction, ( )jW  represents the functional value at a grid point 

( ), ( )r

i i  indicates the r th-order derivative of ( )  at a grid point 
i , and ( )r

ijA are the weighting coefficients of 

the r th-order derivative. It follows from Eq. (1) that the quadrature rules may be written collectively in matrix form 

as: 

 
( ) ( ){ } [ ] { }r rA                    (2) 

 

where )(][ rA  is the r th-order DQM weighting coefficient matrix, and 
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The weighting coefficients can be determined by the functional approximations in the η coordinate direction. 

Using the Lagrange interpolation polynomials as the approximating functions, Quan and Chang [34] obtained the 

following algebraic formulations to compute the first-order weighting coefficients 
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where M
(1)

(η) is defined as: 
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The weighting coefficients of the r th-order derivative can be obtained from the following relationship [4], 

 



































nikiA

nkiki
A

AAr

A
n

ijj

r

ij

ki

r

ik
ik

r

ii

r

ik

,...,2,1,

,...,2,1,,

,1

)(

)1(
)1()1(

)( 
           

 

         

        (7) 

 

It is also possible to compute the higher order DQM weighting coefficients matrices from the following 

recurrence relationships [3]: 

 
)1()1()1()1()( ][][][][][ AAAAA rrr                       (8) 

 

It can be seen from Eq. (8) that having the matrix 
)1(][A of the first-order derivative weighting coefficients, one 

can obtain the weighting coefficients of the higher-order derivatives by successive multiplications of the 
)1(][A matrix by itself. 

One of the key factors in the accuracy and rate of convergence of the DQM solutions is the choice of grid points. 

It is well known that the equally spaced grid points are not very desirable [3]. It has been suggested that non-

uniformly spaced grid points can generate more accurate solutions. The zeros of some orthogonal polynomials are 

commonly adopted as the grid points.  In this work, the Chebyshev-Gauss-Lobatto grid points are used for 

calculation of weighting coefficients. These points are given in dimensionless units of length by [3] 
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3    FORMULATION FOR FREE VIBRATION ANALYSIS OF BEMAS 

3.1 Governing equation and boundary conditions 

Consider the free vibration of a beam with length L, governed by the following non-dimensional differential 

equation 
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where W(X)  is the dimensionless mode shape function of the lateral deflection, X  is dimensionless coordinate along 

the axis of the beam and  Ω  is the dimensionless frequency of the beam vibrations. The dimensionless frequency  Ω 

is given by 
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wherein ρA is the mass per unit length of the beam, EI  is the bending stiffness of the beam, and  ω is the 

dimensional frequency of the beam. The boundary conditions of the beam are: 

(I) Simply-supported edge (S) 
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(II)  Clamped edge (C) 
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(III)   Free edge (F) 
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The analytical solution of Eq. (10) can be expressed as [35, 36] 

 

1 2 3 4( ) sin( ) cos( ) sinh( ) cosh( ),W X C X C X C X C X                 (15) 

 

where the unknown constants Ci (i=1, 2, 3, 4) and the value of Ω can be determined from the known boundary 

conditions of the beam. 

3.2 Implementation of boundary conditions using conventional approaches 

As we discussed in introduction, there are different approaches or ways to implement the boundary conditions of 

initial and/or boundary value problems. Moreover, some approaches have been shown to be equivalent to other 

approaches. Therefore, in this section, we only consider the CBCGE (direct Coupling the Boundary Conditions with 

the discrete Governing Equations) and MWCM (modifying weighting coefficient matrices) approaches which have 

been commonly used by many researchers. In order to explain how these approaches work, we consider the free 

vibration of a beam with clamped-free boundary conditions. The boundary conditions for this case are given in Eqs. 

(13) and (14). 

3.2.1 Implementing boundary conditions by modifying the weighting coefficient matrices (MWCM) 

 

As pointed out earlier, in this technique the Dirichlet-type boundary conditions are numerically implemented while 

the Neumann-type boundary conditions are applied by modifying the DQM weighting coefficients matrices. The 

Neumann-type boundary conditions for the clamped-free beam are: 
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In order to implement the boundary condition given by Eq. (16), we define 
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The second-order DQM weighting coefficient matrix is then computed from the following equation 
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To implement the boundary condition given by Eq. (17), the matrix )2(]ˆ[A  should be modified as follows 
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The third-order DQM weighting coefficient matrix can then be obtained from the following equation 
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To apply the boundary condition given by Eq. (18), the matrix )3(]ˆ[A  should be further modified as:  
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Finally, the modified fourth-order DQM weighting coefficient matrix is obtained as:  

 
)3()1()4( ]

~
[][]ˆ[ AAA       (24) 

 

It can be seen that the Neumann boundary conditions of the beam are built into the DQM weighting coefficient 

matrices. Similarly, one can derive the modified DQM weighting coefficient matrices for beams with other types of 

boundary conditions. For the present case, the quadrature analog of Eq. (10) can be written in matrix form as: 
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}{}{]ˆ[ 2)4( WWA          (25) 

 

The Dirichlet-type boundary condition of the problem can be easily implemented by eliminating the first row and 

column of the matrix )4(]ˆ[A . 

3.2.2 Implementing boundary conditions by direct coupling the boundary conditions with the discrete governing 

equations (CBCGE) 

In this technique, the grid points are first divided into two different groups, namely, domain points and boundary 

points. The governing differential equation is then satisfied at the domain points while the boundary conditions are 

applied at the boundary points. For the present problem, the domain and boundary points are as follows [3, 4, 25] 
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where }{ dX  and }{ bX indicate the vectors of domain and boundary points, respectively. It can be seen that in the 

CBCGE approach, the grid points X2 and Xn-1 are also treated as boundary points while they really belong to the 

domain points. 

Satisfying the governing differential equation of the beam (given by Eq. (10)) at all the domain points and, 

applying the boundary conditions at all the boundary points yields the following eigenvalue equation: 
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where, for the considered case of clamped-free beam, 
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By eliminating the vector }{
b

W , Eq. (28) is reduced to the following eigenvalue problem: 
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It is noted that above procedure satisfy simultaneously the Dirichlet- and Neumann-type boundary conditions of 

the problem 

 

3.3 Implementation of boundary conditions using the proposed approach 
 

It can be seen from Sections 3.2.1 and 3.2.2 that the implementation of boundary conditions in the CBCGE approach 

is not as straightforward as that in the MWCM approach. Moreover, the CBCGE approach requires some 

mathematical manipulations to construct resulting eigenvalue problem and is somehow cumbersome and boring. 

The MWCM approach has also been shown not to be suitable for analysis of beams with general boundary 

conditions [24]. As a result, a simple procedure based on the DQM that can easily handle the beam problem with 

general boundary conditions is still missing. Therefore, an alternative algorithm is needed which motivates the 

present study to present a simple approach for implementation of general boundary conditions in the DQM free and 

forced vibration analysis of beams.  

Using the quadrature rule, given in Eq. (2), the quadrature analog of Eq. (10) can be written in matrix form as: 

 

}]{[}{][ 2)4( WIWA         (37) 

 

where )4(][A  is the fourth-order DQM weighting coefficient matrix and ][I  is an n × n identity matrix. Eq. (37) can 

also be expressed as: 

}]{[}]{[ 2 WMWK         (38) 

 
where ][K  and ][M  are stiffness and mass matrices of the beam defined as; 

 

,][][ )4(AK     ][][ IM         (39) 

 

To describe the proposed methodology, similar to previous section, we consider the free vibration problem of a 

beam with clamped-free boundary conditions. Applying the beam boundary conditions to Eq. (38), we obtain: 

 



















































































































































n

n

nnnnn

n

n

n

n

nnnnn

nnnnn

nnnnn

n

n

n

W

W

W

W

W

MMMM

MMMM

MMMM

W

W

W

W

W

AAAA

AAAA

KKKK

KKKK

KKKK

AAAA

1

3

2

1

)2(3)2(2)2(1)2(

4434241

3333231

2

1

3

2

1

)3()3(

3

)2(

2

)3(

1

)2()2(

3

)2(

2

)2(

1

)2(3)2(2)2(1)2(

4434241

3333231

)1(

1

)1(

13

)1(

12

)1(

11

.

.

.

0...000

0...000

...

...

...

0...000

0...000

.

.

.

...

...

....

...

...

...

0...001



 

       

 

 

 

 

(40) 

 



                                                                      A Simple and Systematic Approach for Implementing Boundary …                         382 

 

© 2015 IAU, Arak Branch 

It can be seen from Eq. (40) that the quadrature analogs of the boundary conditions are directly replaced into the 

quadrature analogs of the governing differential equation at the boundary points and their immediate adjacent points. 

At this step, the proposed approach is identical to the conventional CBCGE approach.  

Unfortunately, the eigenvalue problem given in Eq. (40) is difficult to solve since it is highly ill-conditioned. To 

overcome this difficulty, some researchers [3, 25] have proposed to eliminate the degrees of freedom correspond to 

the boundary points and their adjacent points (i.e., W1, W2, Wn-1 and Wn). As we mentioned in previous section, this 

approach is the CBCGE approach wherein the grid points X2 and Xn-1 are also treated as boundary points. However, 

as we will show in this section, this is not the only case where the ill-conditioning phenomenon in solving the 

eigenvalue problem (40) can be eliminated. 

To understand the major reason for such ill-conditioning phenomenon, we considered the free vibration problem 

of beams with general boundary conditions and investigated the effect of elimination of quadrature analog equations 

of the Dirichlet- and Neumann-type boundary conditions on the accuracy and stability of numerical solutions. Our 

numerical experiments showed that this difficulty is highly affected by the elimination of quadrature analog 

equations of the Dirichlet-type boundary conditions. For example, the ill-conditioned eigenvalue problem (40) can 

be converted to a well-conditioned eigenvalue problem if the quadrature analog equation of the Dirichlet-type 

boundary condition is eliminated as follows:  
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(41) 

 

It can be seen that the mass matrix of above eigenvalue problem has three zero rows and therefore is a singular 

matrix. However, such an eigenvalue problem can be easily and accurately solved using the QZ algorithm [37]. 

Currently, some subroutines that implement QZ algorithms are included in most linear algebra-related software 

packages such as the MATLAB and LAPACK. 

Similarly, one can easily formulate the present approach for beams with other type of boundary conditions. From 

Eqs. (40) and (41), it can be seen that the proposed approach is very simple and straightforward and, thus, its 

programming is very easy. Besides, it consists of only two simple steps: 

1. Similar to CBCGE approach, substitute the quadrature analog equations of the boundary conditions into the 

quadrature analog equations of the governing differential equation at the boundary points and their 

immediate adjacent points. 

2. Eliminate the quadrature analog equations of the Dirichlet-type boundary conditions.  

 

3.4 Numerical results 

 

To demonstrate the stability and accuracy of the proposed approach, natural frequencies of beams with general 

boundary conditions are evaluated and the results are tabulated in Tables 1-2. In Table 1. , the results of proposed 

approach are compared with the solutions obtained by the CBCGE and MWCM approaches. The exact frequency 

parameters are also shown and bolded in the table. The numerical results are obtained using 19 grid points, and the 

coordinates of grid points are selected as those given in Eq. (9). From Table 1. , it can be seen that the results of 

proposed approach are identical to the results of the CBCGE approach. This is a reasonable result, because both the 

proposed approach and the CBCGE approach use a similar approach to impose the boundary conditions of the beam 

at its boundary points. In other words, only the way of implementation of boundary conditions in these approaches 

(proposed approach and the CBCGE approach) is different. It can also be seen from Table 1 that, except for CC and 

FF beams, the MWCM approach produces better accuracy than the present approach and the CBCGE approach. 

This is also a reasonable result, because the Neumann-type boundary conditions are exactly satisfied in the MWCM 

approach while they are approximately satisfied in the present approach and the CBCGE approach. However, the 

MWCM approach is found to produce spurious modes with zero frequency for beams with CC and FF boundary 

conditions. The frequency parameters correspond to spurious modes are also bolded in the Table 1. 

 



383          S. A. Eftekhari     

© 2015 IAU, Arak Branch 

Table 1 

Comparison of natural frequencies of a beam with different boundary conditions (n = 19). 

Beam Method Ω1 Ω2 Ω3 Ω4 Ω5 

SS Present 9.8696 39.4784 88.8264 157.9141 246.7488 

 CBCGE 9.8696 39.4784 88.8264 157.9141 246.7488 

 MWCM 9.8696 39.4784 88.8264 157.9137 246.7401 

 Exact 9.8696 39.4784 88.8264 157.9137 246.7401 

CC Present 22.3733 61.6728 120.9034 199.8597 298.5597 

 CBCGE 22.3733 61.6728 120.9034 199.8597 298.5597 

 MWCM 00.0000 22.3733 61.6728 120.9034 199.8594 

 Exact 22.3733 61.6728 120.9034 199.8594 298.5555 

SC Present 15.4182 49.9649 104.2477 178.2704 272.0350 

 CBCGE 15.4182 49.9649 104.2477 178.2704 272.0350 

 MWCM 15.4182 49.9649 104.2477 178.2697 272.0307 

 Exact 15.4182 49.9649 104.2477 178.2697 272.0310 

SFa Present 15.4182 49.9649 104.2478 178.2638 271.8390 

 CBCGE 15.4182 49.9649 104.2478 178.2638 271.8390 

 MWCM 15.4182 49.9649 104.2477 178.2697 272.0307 

 Exact 15.4182 49.9649 104.2477 178.2697 272.0310 

CF Present 3.5160 22.0345 61.6972 120.9021 199.8387 

 CBCGE 3.5160 22.0345 61.6972 120.9021 199.8387 

 MWCM 3.5160 22.0345 61.6972 120.9019 199.8595 

 Exact 3.5160 22.0345 61.6972 120.9019 199.8595 

FFb Present 22.3733 61.6728 120.9037 199.8177 298.0423 

 CBCGE 22.3733 61.6728 120.9037 199.8177 298.0423 

 MWCM 00.0009 22.3733 61.6728 120.9034 199.8594 

 Exact 22.3733 61.6728 120.9034 199.8594 298.5555 
aIn a mathematical sense the first mode has a zero frequency, and corresponds to rigid body rotation about the simply-supported 

end. 
bIn a mathematical sense the first two modes have zero frequencies and correspond to rigid body translation in the transverse 

direction and rigid body rotation about the beam center. 

 

 

The DQM solution results shown in Table 1 were calculated using Chebyshev-Gauss-Lobatto grid points (see 

Eq. (9)). It is also possible to improve their accuracy by using the following type of grid points: 
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(42) 

 

where   is a parameter that determines the closeness between the boundary points (η1 and ηn) and their immediate 

adjacent points (η2 and ηn-1). In practice, the magnitude of   should be as small as possible (≤  10
-3

). In this study, 

the magnitude of parameter   is assumed to be δ = 10
-3

. 

when the above type of grid points is used, Table 2. shows the convergence and accuracy of solutions obtained by 

the proposed approach. Comparing these results with those in Table 1. , it can be seen that the use of  -points 

improves significantly the accuracy of solutions. 
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Table 2 

Convergence and comparison of natural frequencies of a beam with different boundary conditions, when adjacent δ-points are 

introduced on grid points. 

Beam Method n Ω1 Ω2 Ω3 Ω4 Ω5 

SS Present 19 9.8696 39.4784 88.8264 157.9137 246.7400 

  21 9.8696 39.4784 88.8264 157.9137 246.7401 

 Exact  9.8696 39.4784 88.8264 157.9137 246.7401 

CC Present 19 22.3733 61.6728 120.9034 199.8595 298.5555 

  21 22.3733 61.6728 120.9034 199.8594 298.5555 

 Exact  22.3733 61.6728 120.9034 199.8594 298.5555 

SC Present 19 15.4182 49.9649 104.2477 178.2697 272.0309 

  21 15.4182 49.9649 104.2477 178.2697 272.0310 

 Exact  15.4182 49.9649 104.2477 178.2697 272.0310 

SF Present 19 15.4182 49.9649 104.2477 178.2696 272.0263 

  21 15.4182 49.9649 104.2477 178.2697 272.0312 

  23 15.4182 49.9649 104.2477 178.2697 272.0310 

 Exact  15.4182 49.9649 104.2477 178.2697 272.0310 

CF Present 19 3.5160 22.0345 61.6972 120.9019 199.8590 

  21 3.5160 22.0345 61.6972 120.9019 199.8596 

  23 3.5160 22.0345 61.6972 120.9019 199.8595 

 Exact  3.5160 22.0345 61.6972 120.9019 199.8595 

FF Present 19 22.3733 61.6728 120.9034 199.8585 298.5430 

  21 22.3733 61.6728 120.9034 199.8595 298.5563 

  23 22.3733 61.6728 120.9034 199.8594 298.5555 

 Exact  22.3733 61.6728 120.9034 199.8594 298.5555 

 

 

4    FORMULATION FOR FORCED VIBRATION ANALYSIS OF BEMAS 
4.1 Governing equation  

Consider the forced vibration of a beam with length L, mass per unit length A , bending stiffness EI; subjected to a 

dynamic transverse load f (x, t). The governing differential equation of motion of the beam is given by 

2 4

2 4
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   (43) 

 
where w(x, t)  is the lateral deflection of the beam, and t is the time. Using the normal mode approach (modal 

analysis), the analytical solution of Eq. (43) can be expressed as [36] 
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where i  is the ith natural frequency and )(xWi  is the corresponding natural mode. Moreover, )(iQ  is the 

generalized force corresponding to the ith mode given by 

0
( ) ( ) ( , ) , 1,2,3,...

L

i iQ W x f x dx i               (45) 

 

It is noted that the first two terms inside the brackets of Eq. (44) denote the free vibration response while the 

third term indicates the forced vibration response of the beam. The constants Ai and Bi can be evaluated using the 

initial conditions of the beam. 
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4.2 Implementation of boundary conditions using conventional approaches 

 

Similar to Section 3.2, in this section, a beam with clamped-free end conditions is considered and the CBCGE and 

MWCM approaches are briefly described. 

 

4.2.1 Implementing boundary conditions by modifying the weighting coefficient matrices (MWCM) 

 

The procedure is exactly identical to that described in Section 3.2.1. In this case, the quadrature analog of Eq. (43) 

can be written in matrix form as: 

 

}{}{]ˆ[}]{[ )4( fwAEIwIA       (46) 

 

where the matrices )4(]ˆ[A and ][I are defined in Sections 3.2.1 and 3.2.2, respectively, and 
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Eq. (46) is a system of linear ordinary differential equations of second-order in time with constant coefficients 

and can be solved using various time integration schemes (after applying the Dirichlet-type boundary conditions). In 

this study, the Newmark method [38] is used for the time integration of the DQM equations of motion given in Eq. 

(46). 

4.2.2 Implementing boundary conditions by direct coupling the boundary conditions with the discrete governing 

equations (CBCGE) 

The procedure is identical to that described in Section 3.2.2. Following the procedure explained in Section 3.2.2, the 

quadrature analog of Eq. (43) can be written in matrix form as: 
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 (50) 

 

where [Mbb], [Mbd] and [Mdb] are zero matrices; [Mdd] is an identity matrix of size (n - 4) × (n - 4); and 
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T

nd txftxftxff )],(...),(),([}{ 243      (53)    

 

Note that the matrices [Kbb], [Kbd], [Kdb] and [Kdd] are defined already in Section 3.2.2. By eliminating the vector 

}{
b

w , Eq. (50) is reduced to the following system of ordinary differential equations: 
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}{}]{[}]{[ ddd fww  KM        (54) 

 
where 

 1[ ] [ ], [ ] [ ] [ ][ ] [ ]dd dd db bb bdA M EI K K K K   M K                (55) 

4.3 Implementation of boundary conditions using the proposed approach 
 

The procedure is identical to that described in Section 3.3. Following the procedure explained in Section 3.3, the 

quadrature analog of Eq. (43) can be expressed in matrix form as: 
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Eq. (56) can also be expresses as: 

 

}{}]{[}]{[ fKM  ww                (57) 

 

Our numerical experiments showed that above system of ordinary differential equations is a well-conditioned 

system of ordinary differential equations. Therefore, it can be easily and directly solved for unknowns using various 

time integration schemes.   

 

4.4 Numerical results 

 

To demonstrate the applicability of the proposed approach for the forced vibration analysis of beams, numerical  

experiments are carried out for the dynamic analysis of a simply supported beam subjected to a harmonically 

varying load in the from: 
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where f0 and ωf  are the amplitude and frequency of variation of the applied load, respectively, and m is a constant. 

Assuming that the beam is initially at rest, an analytical solution for the present problem can be obtained from Eq. 

(44) as: 
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Thus, the performance of various DQM algorithms can be easily tested by comparing their solutions with above 

analytic solution. For the numerical experiment, the following data are used: 
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The dynamic response of the simply supported beam subjected to harmonically varying load (58) is computed 

using the proposed approach and using the CBCGE and MWCM approaches. The Newmark method with a time 
step of Δt = 0.001s is used to solve the resulting dynamic equations. Table 3. shows the convergence of solutions 

with respect to the number of DQM grid points. Note that the Lagrange interpolation scheme in the x-direction is 

used to obtain the solution values which were not obtainable directly from the quadrature solutions.  From Table 3. , 

it may be seen that the results of proposed approach are identical to those obtained by the CBCGE approach. Again, 
one sees that the MWCM approach gives better accuracy than the present approach and the CBCGE approach. 

As we mentioned earlier in Section 3.4, a way for improving the accuracy of proposed approach is to use the 

Chebyshev grid points with adjacent -points. To demonstrate this for the case of forced vibration, the results of the 

present problem obtained using different DQM approaches are presented in Table 4. From Table 4. it can be seen 

that, for a small number of grid points, the MWCM approach provides better accuracy than other approaches. But, 

by increasing the number of grid points, the accuracy of solutions obtained by the proposed approach and the 

CBCGE approach becomes comparable to that of the MWCM approach.  
 

Table 3 

Convergence and comparison of forced vibration responses (w(x, 0.5)) of a simply supported beam subjected to a harmonically 

varying load. 
n Method x = 0.1 x = 0.25 x = 0.5 x = 0.75 x = 0.9 

5 Present 2.43248e-003 5.52097e-003 7.74873e-003 5.52097e-003 2.43248e-003 

 CBCGE 2.43248e-003 5.52097e-003 7.74873e-003 5.52097e-003 2.43248e-003 

 MWCM 1.86551e-003 4.29099e-003 6.06706e-003 4.29099e-003 1.86551e-003 

6 Present 2.14595e-003 4.87064e-003 6.83599e-003 4.87064e-003 2.14595e-003 

 CBCGE 2.14595e-003 4.87064e-003 6.83599e-003 4.87064e-003 2.14595e-003 

 MWCM 1.85785e-003 4.25034e-003 5.99175e-003 4.25034e-003 1.85785e-003 

7 Present 1.83069e-003 4.19257e-003 5.93271e-003 4.19257e-003 1.83069e-003 

 CBCGE 1.83069e-003 4.19257e-003 5.93271e-003 4.19257e-003 1.83069e-003 

 MWCM 1.85328e-003 4.24099e-003 5.99789e-003 4.24099e-003 1.85328e-003 

8 Present 1.84280e-003 4.21864e-003 5.96745e-003 4.21864e-003 1.84280e-003 

 CBCGE 1.84280e-003 4.21864e-003 5.96745e-003 4.21864e-003 1.84280e-003 

 MWCM 1.85338e-003 4.24120e-003 5.99777e-003 4.24120e-003 1.85338e-003 

9 Present 1.85381e-003 4.24191e-003 5.99891e-003 4.24191e-003 1.85381e-003 

 CBCGE 1.85381e-003 4.24191e-003 5.99891e-003 4.24191e-003 1.85381e-003 

 MWCM 1.85345e-003 4.24115e-003 5.99790e-003 4.24115e-003 1.85345e-003 

10 Present 1.85361e-003 4.24151e-003 5.99837e-003 4.24151e-003 1.85361e-003 

 CBCGE 1.85361e-003 4.24151e-003 5.99837e-003 4.24151e-003 1.85361e-003 

 MWCM 1.85345e-003 4.24115e-003 5.99790e-003 4.24115e-003 1.85345e-003 

 Exact   1.85345e-003 4.24115e-003 5.99789e-003 4.24115e-003 1.85345e-003 
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Table 4 

Convergence and comparison of forced vibration responses (w(x, 0.5)) of a simply supported beam subjected to a harmonically 

varying load, when adjacent δ-points are introduced on grid points. 

n Method x = 0.1 x = 0.25 x = 0.5 x = 0.75 x = 0.9 

7 Present 1.86404e-003 4.26647e-003 6.03408e-003 4.26647e-003 1.86404e-003 

 CBCGE 1.86404e-003 4.26647e-003 6.03408e-003 4.26647e-003 1.86404e-003 

 MWCM 1.85536e-003 4.24602e-003 6.00441e-003 4.24602e-003 1.85536e-003 

8 Present 1.85435e-003 4.24257e-003 5.99807e-003 4.24257e-003 1.85435e-003 

 CBCGE 1.85435e-003 4.24257e-003 5.99807e-003 4.24257e-003 1.85435e-003 

 MWCM 1.85342e-003 4.24080e-003 5.99604e-003 4.24080e-003 1.85342e-003 

9 Present 1.85342e-003 4.24111e-003 5.99786e-003 4.24111e-003 1.85342e-003 

 CBCGE 1.85342e-003 4.24111e-003 5.99786e-003 4.24111e-003 1.85342e-003 

 MWCM 1.85345e-003 4.24116e-003 5.99791e-003 4.24116e-003 1.85345e-003 

10 Present 1.85345e-003 4.24114e-003 5.99787e-003 4.24114e-003 1.85345e-003 

 CBCGE 1.85345e-003 4.24114e-003 5.99787e-003 4.24114e-003 1.85345e-003 

 MWCM 1.85345e-003 4.24116e-003 5.99789e-003 4.24116e-003 1.85345e-003 

 Exact   1.85345e-003 4.24115e-003 5.99789e-003 4.24115e-003 1.85345e-003 

5    FORMULATION FOR FREE VIBRATION ANALYSIS OF RECTANGULAR PLATES 

5.1 Governing equation and boundary conditions 

Consider the free vibration of an elastic isotropic thin rectangular plate with length a and width b, governed by the 

following non-dimensional differential equation 
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    (61) 

 

where ),( YXW  is the dimensionless mode function of the lateral deflection; axX / and byY / are 

dimensionless coordinates; ba /  is the aspect ratio; and   is the dimensionless frequency. Furthermore, 

Dha /2   wherein , ρ, h, and D, are, respectively, the circular frequency, mass density, thickness, and 

flexural rigidity of the plate. The boundary conditions of the plate are: 

(I) Simply-supported edge (S) 
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(II)  Clamped edge (C) 
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(III)   Free edge (F) 
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wherein   is the Poisson’s ratio. For a free corner formed by the intersection of two free edges, the additional 

condition 
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(68) 

 
Must also be satisfied at the corner [39]. 

 

5.2 Discretization of plate governing equation using the DQM 

 

Consider n grid points with coordinates X1, X2, …, Xn  in the X-direction, and m grid points with coordinates Y1, Y2, 

…, Ym  in the Y-direction. Satisfying Eq. (61) at any grid point X = Xi and substituting the quadrature rule, given in 

Eq. (1), into results gives 
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where [I] is an identity matrix of order n × n, [A]
(2)

 and [A]
(4)

 are the DQM weighting coefficient matrices of the 

second- and fourth-order X-derivatives, respectively. Furthermore, 
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Satisfying Eq. (69) at any grid point Y = Yi and substituting the quadrature rule, given in Eq. (1), into results 

gives 
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where the n × n sub-matrices ]
~

[ ijM  and ]
~

[ ijK are given by 
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where ijI  are the elements of an m × m identity matrix, )2(

ijA  and )4(

ijA  are the DQM weighting coefficients of the 

second- and fourth-order Y-derivatives, respectively. Furthermore, 
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The general eigenvalue problem (71) can be solved for eigenvalues if the boundary conditions of the plate are also 

applied. The details are given in the following sections. 

 

5.3 Discretization of plate boundary conditions using the DQM 

 

When the CBCGE approach or proposed approach is applied, it is necessary to discretize the boundary conditions of 

the problem using the DQM. Therefore, the quadrature analog equations of the plate boundary conditions are 

derived in this section. The results are given in the following sections. 
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5.3.1 DQM analogs of the plate boundary conditions in the X-direction 

 

The  boundary  conditions  of  the  rectangular  plate  in  the  X-direction  are  given  in  Eqs.  (62), (64) and (66).  

The corresponding quadrature analogs are given below. 

(I) Simply supported edge condition at X = Xp (p =1 or n)  

From Eqs. (1) and (62), the quadrature analog of the boundary conditions are obtained as:  
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Above quadrature analog equations should be applied at Y1, Y2, …, Ym. 

(II)  Clamped edge condition at X = Xp (p =1 or n)  

From Eqs. (1) and (64), the quadrature analog of the boundary conditions are simply: 
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Above analog equations should be implemented at Y1, Y2, …, Ym. 

(III)   Free edge condition at X = Xp (p =1 or n)  

From Eqs. (1) and (66), the quadrature analog of the boundary conditions are written as: 
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Eqs. (77) and (78) can be expressed in matrix form as: 
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where 
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Eqs. (79) and (80) can be rewritten as: 
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where 

 
(1) (1) (1) (1) (2) (2) (2) (2)

1 2 1 2[ ] [ . . . ],[ ] [ . . . ]p p p pn p p p pnA A A A A A A A                            (84) 



391          S. A. Eftekhari     

© 2015 IAU, Arak Branch 

(3) (3) (3) (3)
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Eqs. (82) and (83) should be applied at Y1, Y2, …, Ym. Satisfying these equations at any grid point Y = Yi and 

substituting the quadrature rule, given in Eq. (1), into results gives 
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which can be used to implement the free-edge boundary conditions of the plate in the X-direction. 

 

5.3.2 DQM analogs of the plate boundary conditions in the Y-direction 

 

The  boundary  conditions  of  the  rectangular  plate  in  the  Y-direction  are  given  in  Eqs.  (63), (65) and (67).  

The corresponding quadrature analogs are given below. 

(I) Simply supported edge condition at Y = Yq (q =1 or m) 

From Eqs. (1) and (63), the quadrature analog of the boundary conditions are obtained as: 
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(II)  Clamped edge condition at Y = Yq (q =1 or m)  

From Eqs. (1) and (65), the quadrature analog of the boundary conditions are obtained as: 
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(III)   Free edge condition at Y = Yq (q =1 or m)  

Satisfying Eq. (67) at any grid point X = Xi and substituting the quadrature rule, given in Eq. (1), into results 

gives 
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Now, using the quadrature rule, Eqs. (90) and (91) may be written as: 
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which can be used to implement the free-edge boundary conditions of the plate in the Y-direction. 
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5.3.3 DQM analogs of the free corner boundary condition at (Xp, Yq) 

 

Consider a rectangular plate having a free corner at (Xp, Yq).  The boundary condition of the rectangular plate, in this 

case, is given in Eq. (68). Using the quadrature rule, given in Eq. (1), the quadrature analog of the corner boundary 

condition is obtained as: 
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where ][ )1(

pA  is defined in Eq. (84). Eq. (94) can be used to implement the free-corner boundary conditions of the 

plate at (X, Y) = (Xp, Yq) 

 

5.4 Implementation of plate boundary conditions 

 

Since the plate problem may be considered as a combination of the two beam problems, the approaches presented in 

Sections 3.2 and 3.3 can also be used to implement the plate boundary conditions. However, there are some major 

limitations to the application of CBCGE and MWCM approaches in implementing general boundary conditions of 

the rectangular plates. These limitations are: 

1. It is not possible to modify the DQM weighting coefficient matrices such that the free edge and free corner 

boundary conditions are implemented. In other words, the application of MWCM approach is limited to the 

plate problems involving simply supported and clamped edges. 

2. As we discussed earlier in Section 3.2, in the CBCGE approach, the quadrature analog equations of the 

boundary conditions should be eliminated from the discrete equations of the problem. Therefore, it is not 

possible to implement the free corner boundary condition in the CBCGE approach. 

The above-mentioned limitations have also been addressed earlier by some researchers in the field (for instance, 

see Refs. [4, 22, 25]). As we will show in the numerical experiments, such limitations can be easily tackled using the 

proposed approach. This is because the proposed approach only eliminates the degrees of freedom correspond to the 

Dirichlet-type boundary conditions from the final discrete equations of the problem. Therefore, the free edge and 

free corner boundary conditions of the plate can also be easily implemented using the proposed approach. 

5.5 Numerical results 

To demonstrate the accuracy and efficiency of the proposed approach, natural frequencies of square plates with 

different boundary conditions are evaluated and the results are tabulated in Tables 5-8. The numerical results shown 

in Tables 5-7. are obtained using the Chebyshev grid points (see Eq. (9)) while those given in Table 8. are calculated 

using the Chebyshev grid points with adjacent δ-points (see Eq. (42)). 

The first five dimensionless natural frequencies of square plates with SSSS, SCSC, and CCCC boundary 

conditions are shown in Table 5. and compared with the analytical solution results of Leissa [39]. The results of the 

SBCGE and MWCM approaches by Shu and Du [24] are also shown for comparison purposes. Similar to Ref. [24], 

the numerical results are calculated using 12 grid points in both the X and Y directions. It can be seen that, in all 

cases, the solutions of proposed method are very close to those predicted by the SBCGE approach.  It can also be 

seen that he MWCM approach provides better accuracy than the present approach and the SBCGE approach for 

square plates with SSSS boundary conditions. However, this technique predicts spurious modes with non-zero 

frequency for square plates with SCSC and CCCC boundary conditions. 

As pointed out earlier in introduction, Shu and Du [25] also considered the free vibration problem of rectangular 

plates with general boundary conditions. They proposed a CBCGE approach for implementing the plate boundary 

conditions (see Section 3.2.2 for more details). They also showed that the solutions of this approach may be very 

sensitive to the grid point distribution. For instance, when the Chebyshev-Gauss-Lobatto grid points are used for 

calculation of weighting coefficients (see Eq. (9)), the CBCGE approach has shown to lead to erroneous results for 

natural frequencies of rectangular plates involving free corners [25]. In this section, we will show that this difficulty 

can be solved if the proposed approach will be used to handle the plate boundary conditions. 

The numerical results,  shown in Table 5., were obtained using an equal number of grid points in both the X and 

Y directions (n = m). Our numerical experiments for the present problem showed that better accuracy in the DQM 

solutions can be achieved if an unequal number of grid points is considered in each coordinate direction of the plate. 
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Table 6. presents the first five natural frequencies of square plates involving free corners. The obtained numerical 

results are also compared with those obtained by the CBCGE approach [25], new Ritz formulation [28], and the FE-

Ritz method [40]. It is noted that in both the present and CBCGE approaches, the Chebyshev-Gauss-Lobatto grid 

points are used for calculation of weighting coefficients (see Eq. (9)). It is also noted that the results of Refs. [28, 40] 

are believed to be highly accurate since both the geometrical and natural boundary conditions of the plate are 

strongly satisfied in the algorithms presented in these references. It can be seen from Table 6. that the results of 

proposed method have closer agreement with the results of Refs. [28, 40] than the CBCGE approach [25] and, thus, 

are more accurate. The results of the CBCGE approach [25] are found to be in serious error. This is due to the lack 

of satisfaction of free corner boundary conditions in the CBCGE approach. It can also be seen from Table 6. that the 

accuracy and convergence rate of solutions of the proposed method can be significantly improved when m value is 

chosen to be smaller than n value. This numerical observation has also been reported by Bert and Malik [41] in 

solving the free vibration problem of plates with irregular geometries. 

To better see the accuracy and efficiency of the proposed method, the percent error in quadrature solutions 

(defined as |ΩDQM-ΩFE-Ritz [40] |/ ΩFE-Ritz [40] ×100) is shown in Table 7. The results are also compared with those of the 

CBCGE approach [25]. Needless to say, the present method is more accurate than the CBCGE approach. 

As we discussed earlier in Sections 3.4 and 4.4, the accuracy of numerical results of proposed method can be 

significantly improved if the adjacent δ-points are introduced on grid points. In this case, the coordinates of the grid 

points can be obtained from Eq. (42) by replacing the variable η with variables X or Y. When the adjacent δ-points 

are introduced on grid points, Table 8. presents the first five natural frequencies of square plates with free corners. 

These results are obtained using δ = 10
-3

.The results are also compared with those obtained by the FE-Ritz approach 

[40]. By comparing the results of Table 8. with those of Table 6., it can be seen that the DQM solution with the 

inclusion of δ-points produces much more accurate natural frequencies. Besides, depending on the boundary 

conditions of the plate, better accuracy and convergence rate can be achieved if n value is chosen to be smaller or 

larger than m value. This behavior is the same for plates involving simply supported edges (i.e., for plates with 

SSFF, SFFF and FFFF boundary conditions) or for plates involving clamped edges (i.e., for plates with CCFF, 

CSFF and CFFF boundary conditions). 
 

Table 5 

Comparison of natural frequencies of square plates with SSSS, SCSC, and CCCC boundary conditions (n = m = 12). 

Plate Method Ω1 Ω2 Ω3 Ω4 Ω5 

SSSS Present 19.7392 49.3494 49.3494 78.9586 98.4154 

 SBCGE [24] 19.7392 49.3495 49.3495 78.9586 98.4154 

 MWCM [24] 19.7392 49.3480 49.3480 78.9568 98.6956 

 Exact [39] 19.7392 49.3480 49.3480 78.9568 98.6960 

SCSC Present 28.9509 54.7450 69.3293 94.5898 101.9498   

 SBCGE [24]     28.951      54.745   69.329   94.589 101.950    

 MWCM [24]     9.870     28.951   39.482   54.743 69.344 

 Exact [39] 28.9509 54.7431 69.3270 94.5853 102.2162   

CCCC Present 35.9861 73.3988 73.3988 108.2305   131.4177   

 SBCGE [24]    35.986      73.399   73.399   108.230    131.418    

 MWCM [24] 0.788   22.381   22.381   35.985 61.368 

 Ritz [39] 35.992    73.413   73.413   108.27    131.64    

 

Table 6 

Comparison of natural frequencies of square plates with free corners.  

Plate Method n m Ω1 Ω2 Ω3 Ω4 Ω5 

SSFF Present 15 15 3.4030 17.3164 19.3883 38.3193 51.0394 

   14 3.3870 17.3166 19.3495 38.2782 51.0420 

   13 3.3696 17.3165 19.3064 38.2309 51.0385 

 CBCGE [25] 15 15 2.549 17.316   17.662   36.576   51.039   

 New Ritz [28]   3.3670 17.316   19.293   38.211   51.035   

 FE-Ritz [40]   3.3670 17.3164 19.2929 38.2112 51.0354 

CSFF Present 15 15 5.9605 19.6747 24.0289 42.7452 52.8101 

   14 5.9425 19.6371 24.0352 42.7547 52.7730 

   13 5.8700 19.5316 24.1248 42.8147 52.7146 
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 CBCGE [25] 15 15 5.780    20.703    20.926   40.296   52.255   

 New Ritz [28]   5.351    19.075    24.671   43.088   52.707   

 FE-Ritz [40]   5.3511 19.0752 24.6705 43.0876 52.7075 

CCFF Present 15 15 7.4435 23.9613 26.4819 47.4852 62.7220 

   14 7.8116 23.9452 26.1845 47.1993 62.8072 

   13 7.3887 24.0238 26.3397 47.5000 62.7017 

 CBCGE [25] 15 15 7.873   23.615   23.873   44.587   62.730   

 New Ritz [28]   6.919   23.904   26.585   47.651   62.706   

 FE-Ritz [40]   6.9195 23.9040 26.5851 47.6519 62.7063 

CFFF Present 15 15 3.8935 9.6875 20.9346 27.7802 30.0323 

   14 3.8641 9.7817 20.9937 27.5841 29.9884 

   13 3.9077 9.3734 21.0125 27.5565 30.2556 

 CBCGE [25] 15 15 3.898   9.459   20.206   26.150   26.500   

 New Ritz [28]   3.4712 8.5074 21.2864 27.1990 30.9590 

 FE-Ritz [40]   3.4711 8.5067 21.2850 27.1989 30.9563 

SFFF Present 15 15 6.7053 14.9092 25.5050 26.1287 48.4739 

   14 6.7038 14.9042 25.5017 26.0413 48.4540 

   13 6.6341 14.9036 25.3839 26.0324 48.4512 

 CBCGE [25] 15 15 5.161   14.725   23.082   24.156   46.296   

 New Ritz [28]   6.6437 14.9015 25.3757 26.0005 48.4495 

 FE-Ritz [40]   6.6437 14.9015 25.3757 26.0005 48.4495 

FFFF Present 15 15 13.6686 19.5962 24.3793 35.0164 35.1960 

   14 13.6676 19.5958 24.3039    34.9416 35.0069 

   13 13.4671 19.5959 24.2958 34.8298 34.9197 

 CBCGE [25] 15 15 10.303   19.596   22.146   30.026   30.803   

 New Ritz [28]   13.4682 19.5961 24.2702 34.8009 34.8009 

 FE-Ritz [40]   13.4682 19.5961 24.2702 34.8009 34.8009 

 

 

Table 7 

Percent error in solutions of the proposed approach and comparison with that of the CBCGE approach.  

Plate Method n m Ω1 Ω2 Ω3 Ω4 Ω5 Average Error (%) 

SSFF Present 15 15 1.0692 0   0.4945 0.2829 0.0078 0.3709 

   13 0.0772 0.0006 0.0700 0.0516 0.0061 0.0411 

 CBCGE [25] 15 15 24.2946   0.0023 8.4534 4.2794 0.0071 7.4074 

CSFF Present 15 15 11.3883   3.1428 2.6007 0.7947 0.1947 3.6242 

   13 9.6971 2.3926 2.2120 0.6334 0.0135 2.9897 

 CBCGE [25] 15 15 8.0152 8.5336 15.1780   6.4789 0.8585 7.8128 

CCFF Present 15 15 7.5728 0.2397 0.3882 0.3498 0.0250 1.7151 

   13 6.7808 0.5012 0.9231 0.3188 0.0073 1.7062 

 CBCGE [25] 15 15 13.7799   1.2090 10.2016   6.4319 0.0378 6.3320 

CFFF Present 15 15 12.1691   13.8808   1.6462 2.1372 2.9849 6.5636 

   13 12.5781   10.1884   1.2802 1.3148 2.2635 5.5250 

 CBCGE [25] 15 15 12.2987   11.1947   5.0693 3.8564 14.3955   9.3629 

SFFF Present 15 15 0.9272 0.0517 0.5095 0.4931 0.0504 0.4064 

   13 0.1445 0.0141 0.0323 0.1227 0.0035 0.0634 

 CBCGE [25] 15 15 22.3174   1.1844 9.0390 7.0941 4.4448 8.8159 

FFFF Present 15 15 1.4879 0.0005 0.4495 0.6192 1.1353 0.7385 

   13 0.0082 0.0010 0.1055 0.0830 0.3414 0.1078 

 CBCGE [25] 15 15 23.5013   0.0005 8.7523 13.7206    11.4879   11.4925   
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Table 8 

Convergence and comparison of natural frequencies of square plates with free corners, when adjacent δ-points are introduced on 

grid points.  

Plate Method n × m Ω1 Ω2 Ω3 Ω4 Ω5 

CSFF Present 15 × 13 5.4017 19.1158 24.5975 43.0245 52.7025 

  17 × 15 5.3921 19.1119 24.6081 43.0248 52.7076 

  19 × 17 5.3835 19.1073 24.6192 43.0308 52.7096 

 FE-Ritz [40]  5.3511 19.0752 24.6705 43.0876 52.7075 

CCFF Present 15 × 13 6.9945 23.8898 26.5280 47.5824 62.7195 

  17 × 15 6.9864 23.8897 26.5381 47.5761 62.7146 

  19 × 17 6.9780 23.8917 26.5466 47.5789 62.7117 

 FE-Ritz [40]  6.9195 23.9040 26.5851 47.6519 62.7063 

CFFF Present 15 × 13 3.5073   8.5945 21.2331 27.2385 30.8367 

  17 × 15 3.4952   8.5859 21.2412 27.2397 30.8427 

  19 × 17 3.4864  8.5751 21.2494 27.2375 30.8566 

 FE-Ritz [40]  3.4711  8.5067 21.2850 27.1989 30.9563 

SSFF Present 15 × 17 3.3675   17.3163   19.2946 38.2134    51.0352 

  17 × 19 3.3671 17.3163 19.2934 38.2119 51.0352 

  19 × 21 3.3669 17.3163 19.2928 38.2112 51.0353 

 FE-Ritz [40]  3.3670 17.3164 19.2929 38.2112 51.0354 

SFFF Present 15 × 17 6.6444 14.9017 25.3783 26.0024 48.4492 

  17 × 19 6.6437 14.9016 25.3765 26.0010 48.4491 

  19 × 21 6.6434 14.9016 25.3755 26.0003 48.4491 

 FE-Ritz [40]  6.6437 14.9015 25.3757 26.0005 48.4495 

FFFF Present 15 × 17 13.4706   19.5959 24.2726 34.8069 34.8071 

  17 × 19 13.4683   19.5960 24.2711 34.8024 34.8034 

  19 × 21 13.4672   19.5961 24.2704 34.8003 34.8014 

 FE-Ritz [40]  13.4682   19.5961 24.2702 34.8009 34.8009 

6    FORMULATION FOR FORCED VIBRATION ANALYSIS OF RECTANGULAR PLATES 

6.1 Governing equation  

Consider the forced vibration problem of an isotropic thin rectangular plate with length a, width b, mass per unit 

area h , and flexural rigidity D subjected to a dynamic transverse load f (x, y, t). The governing differential 

equation of motion of the plate is given by 
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(95) 

 

where w(x, y, t)  is the lateral deflection of the plate, and t is the time. 

 

6.2 Discretization of plate governing equation using the DQM 

 

Consider n grid points with coordinates x1, x2, …, xn  in the x-direction, and m grid points with coordinates y1, y2, …, 

ym  in the y-direction. Satisfying Eq. (95) at any grid point x = xi and substituting the quadrature rule, given in Eq. 

(1), into results gives 
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(96) 

 

where the matrices [I], [A]
(2)

 and [A]
(4)

 are defined in Section 5.2. Furthermore, 
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T
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Satisfying Eq. (96) at any grid point y = yi and substituting the quadrature rule, given in Eq. (1), into results gives 
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where the n × n sub-matrices ]
~

[ ijM  and ]
~

[ ijK are given by 
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where ijI , )2(

ijA ,  and )4(

ijA  are defined in Section 5.2. Furthermore, 
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Eq. (99) can be solved for unknowns if the boundary conditions of the plate are also applied. The procedure for 

applying the plate boundary conditions is similar to that described in Sections 4.2 and 4.3 for the beam problem. To 

save the space, this procedure is not detailed here. 

6.3 Numerical results 

To demonstrate the applicability of the proposed approach for the forced vibration analysis of rectangular plates, 

numerical experiments are carried out for the dynamic analysis of a simply supported plate subjected to a harmonic 

concentrated load acting at a point ),(),( ff yxyx  . The time-dependent concentrated harmonic load is assumed to 

be in the form: 

 

 tyyxxftyxf fff sin)()(),,( 0                                     (104) 

 

where f0 and ωf  are the amplitude and frequency of the applied load, respectively, and )(x or )(y  is the Dirac-

delta function. An exact analytic solution for the present test problem can be easily obtained using the modal 

technique [35, 36]. Therefore, the accuracy of the proposed method can be easily verified by comparing the 

calculated numerical results with those of analytical ones. 

The point discretization methods like the DQM may encounter some difficulties in mathematical modeling and 

treatment of the singular Dirac-delta function. This is mainly caused by the particular properties of the Dirac-delta 

function which are in the form of integrals [14]. A way for overcoming such difficulty is to combine the DQM with 

integral quadrature method [14]. Alternatively, it is possible to regularize the Dirac-delta function with simple 

mathematical functions in order to achieve a smoother representation of the singular function. In this regard, various 

forms of the regularized Dirac-delta function have been proposed in the literature (for example, see Wei et al. [42]). 

Among them, the following form of the regularized Dirac-delta function is used here due to its excellent numerical 

properties such as simplicity, smoothness and regularity: 
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where α is the regularization parameter that defines the relationship between the smoothness and the desired 

accuracy of the approximation. To achieve a good approximation of the Dirac-delta function using above function, 
the parameter α should be as small as possible.  

Fig.1 shows the effects of parameter α on accuracy and smoothness of the regularized Dirac-delta function. It can 

be seen that the shape of approximate function approaches to that of the real Dirac-delta function by decreasing the 
value of the parameter α. In other words, 
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Fig.1 

Variations of the regularized Dirac-delta function with η for 

different values of α. 

 

 

For the numerical experiment, the following data are used: 

 

01, 1, 20, 1, 1/ 2, 1/ 2f f f

fh
a b x y

D D


                                        

     

(107) 

 

The dynamic response of the simply supported plate subjected to harmonic concentrated load (104) is computed 

using the proposed approach and using the CBCGE and MWCM approaches. The Newmark method with a time 
step of Δt = 0.002 s is used to solve the resulting dynamic equations and the regularization parameter α is taken as α 

= 0.05. The numerical results are obtained using two different grid numbers (n = m =15 and 19), and the coordinates 

of the grid points are selected as those given in Eq. (42). Fig. 2 presents the results. It can be seen that the numerical 

results of different DQM methodologies are the same order of accuracy. This also confirms our previous numerical 

observations for the beam problem (see Table 4). 

 

 
 

 

Fig.2 

Comparison of central deflection of a simply supported square plate subjected to a concentrated harmonic load. 
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7    CONCLUSIONS 

In this paper, a simple and systematic approach is proposed for imposing boundary conditions in the differential 

quadrature free and forced vibration analysis of beams and rectangular plates. The formulation of the proposed 

approach is similar to that of the CBCGE approach. But, unlike the CBCGE approach, the grid points near the 

boundaries are not treated as boundary points in the proposed approach. In other words, the degrees of freedom 

related to Dirichlet-type boundary conditions are only eliminated from the original discrete equations. This 

simplifies significantly the solution procedure and its programming. Numerical results reveal that the present 

approach is very efficient and reliable. This paper also suggests a simple scheme for handling problems involving 

the singular Dirac-delta function. 

From the numerical results presented herein, the following general conclusions can be made: 

1. In general, the MWCM approach can give better accuracy than the proposed approach and the CBCGE 

approach for beams and rectangular plates. However, it can produce spurious modes with zero frequency 

for beams with CC and FF boundary conditions, and spurious modes with non-zero frequency for 

rectangular plates involving clamped edges. This technique also cannot be applied to the plate problems 

with free edge and free corner boundary conditions. 

2. In general, the CBCGE approach can produce satisfactory results for beams and rectangular plates with 

general boundary conditions. However, it can produce wrong and oscillatory results for rectangular plates 

involving free corners. 

3.  In general, the proposed technique is the same order of accuracy of the CBCGE approach. But it is much 

simpler than the CBCGE approach since the grid points near the boundaries are not treated as the boundary 

points. Besides, the proposed method can produce much better accuracy than the CBCGE approach for 

rectangular plates involving free corners. 
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