Phytochemical analysis of Echinops macrophyllus Boiss & Hausskn
Subject Areas : Natural Products: Isolation and CharacterizationAzadeh Khademian 1 , Mahdi Moridi Farimani 2 , Mostafa Alilou 3 , Mojtaba Asadollahi 4
1 - Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
2 - Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
3 - Institute of Pharmacy, Pharmacognosy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
4 - Department of Natural Sciences, Mid Sweden University, Sundsvall, Sweden
Keywords: Asteraceae, Aerial parts, Echinops macrophyllus Boiss & Hausskn, Isolation, NMR, Phytoconstituents,
Abstract :
Echinops macrophyllus Boiss & Hausskn, also known as “Shekartighal kohgiluyeh” in Persian, is a prickly perennial herbaceous plant. Various species within the genus Echinops have traditionally been used as remedies for severe coughs, nervous attacks, and infectious diseases. This study aimed to isolate and elucidate the structures of the compounds found in the aerial parts of E. macrophyllus. The ethyl acetate extract from the aerial parts of the plant was fractionated using column chromatography. The structures of the isolated compounds were characterized using 1H NMR, 13C NMR, 1H-1H COSY, HSQC-DEPT, HMBC and NOESY techniques. Phytochemical analysis of the plant resulted in the isolation of six compounds (1-6), including one triterpenoid (α-amyrin) (4), three sterols involving 3-O-[β-D-(6’-tetradecanoate)-glucopyranosyl]-β-sitosterol (6), β-sitosterol (3), and daucosterol (5) as well as two phenolic compounds, namely p-hydroxybenzoic acid (1) and ethyl-2-hydroxy-trans-cinamate (2), from this species for the first time. It is noteworthy that these compounds have previously been reported to exhibit various biological activities.
Abdallah, H.M., Ezzat, S.M., Dine, R.S.E., Abdel-Sattar, E., Abdel-Naim, A.B., 2013. Protective effect of Echinops galalensis against CCl4-induced injury on the human hepatoma cell line (Huh7). Phytochem. Lett. 6(1), 73-78.
Ali, M.S., Saleem, M., Erian, A.W., 2001. A new acylated steroid glucoside from Perovskia atriplicifolia. Fitoterapia 72(6), 712-714.
Alijanpour, B., Azizi, H., Mashayekhi, S., Khodayari, H., Alijanpour, M., 2019. Karyotype analysis and new chromosome number reports of the genus Echinops L. (Asteraceae, Cardueae) from Iran. Iran. J Bot. 25(1), 49-55.
Alizadeh, Z., Farimani, M.M., Parisi, V., Marzocco, S., Ebrahimi, S.N., De Tommasi, N., 2021. Nor-abietane diterpenoids from perovskia abrotanoides roots with anti-inflammatory potential. J. Nat. Prod. 84(4), 1185-1197.
Amirahmadi, A., Naderi, R., Afsharian, M.H., 2022. An investigation into the medicinal plants of Semnan province with taxonomic and therapeutic aspects. Trends Phytochem. Res. 6(4), 312-338.
Bitew, H., Mammo, W., Hymete, A., Yeshak, M.Y., 2017. Antimalarial activity of acetylenic thiophenes from Echinops hoehnelii Schweinf. Molecules 22(11), 1-10.
Bitew, H., Hymete, A., 2019. The Genus Echinops : Phytochemistry and biological activities : A review. Front. Pharmacol. 10, 1-29.
Cho, J.Y., Moon, J.H., Seong, K.Y., Park, K.H., 1998. Antimicrobial activity of 4-hydroxybenzoic acid and trans 4-hydroxycinnamic acid isolated and identified from rice hull. Biosci. Biotechnol. Biochem. 62(11), 2273-2276.
Ferreira, D., Isca, V.M.S, Leal, P., Seka, A.M.L., Silva, H., Periera, M.D.L., Silva, A.M.S., Pinto, D.C.G.A., 2016. Salicornia ramosissima: Secondary metabolites and protective effect agaist acute testicular toxicity. Arab. J. Chem. 11(1), 70-80.
Hymete, A., Rohloff, J., Kjøsen, H., Iversen, T.H., 2005. Acetylenic thiophenes from the roots of Echinops ellenbeckii from Ethiopia. Nat. Prod. Res. 19(8), 755-761.
Kazeminia, M., Mehrabi, A., Mahmoudi, R., 2022. Chemical composition, biological activities, and nutritional application of Asteraceae family herbs: A systematic review. Trends Phytochem. Res. 6(3), 187-213.
Khedher, O., Rigane, G., Riguene, H., Salem, R.B., Moussaoui, Y., 2021. Phenolic profile (HPLC-UV) analysis and biological activities of two organic extracts from Echinops spinosissimus Turra roots growing in Tunisia. Nat. Prod. Res. 35(24), 5786-5793.
Kiyekbayeva, L., Mohamed, N.M., Yerkebulan, O., Mohamed, E.I., Ubaidilla, D., Nursulu, A., Assem, M., Srivedavyasasri, R., Ross, S.A., 2018. Phytochemical constituents and antioxidant activity of Echinops albicaulis. Nat. Prod. Res. 32(10), 1203-1207.
Liu, Y., Ye, M., Guo, H.Z., Zhao, Y.Y., Guo, D.A., 2002. New thiophenes from Echinops Grijisii. J. Asian Nat. Prod. Res. 4(3), 175-178.
Manuja, R., Sachdeva, S., Jain, A., Chaudhary, J.A., 2013. Comprehensive review on biological activities of p-hydroxy benzoic acid and its derivatives. Int. J. Pharm. Sci. Rev. Res. 22(2), 109-115.
Moghaddam, F.M., Farimani, M.M., Salahvarzi, S., Amin, G., 2007. Chemical constituents of dichloromethane extract of cultivated Satureja khuzistanica. Evidence-Based Complement. Altern. Med. 4(1), 95-98.
Mohamed, G.A., Abdel-Lateff, A., Fouad, M.A., Ibrahim, R.M.S., Elkhayat, E.S., Okino, M., 2009. Chemical composition and hepato-protective activity of Imperata cylindrica Beauv. Pharmacogn. Mag., 4(17), 28-36.
Mozaffarian, V., 2006. A taxonomic survey of Echinops L. tribe Echinopeae (Asteraceae) in Iran: 14 new species and diagnostic keys. Iran. J. Bot. 11(2), 197-239.
Nguedia, M.Y., Tueche, A.B., Yaya, A.J.G., Yadji, V., Ndinteh, D.T., Njamen, D., Zingue, S., 2020. Daucosterol from Crateva adansonii DC (Capparaceae) reduces 7,12-dimethylbenz (a) anthracene-induced mammary tumors in Wistar rats. Environ. Toxicol. 35(10), 1125-1136.
Nnamonu, L.A., Tor-Anyiin, T.A., Ugbenyo, N.O., Anyam, J. V., 2016. Isolation and characterization of α-amyrin from stem bark of Ficus exasperata (vahl). Biotechnol. J. Int. 16(4), 1-7.
Nogueira, A.O., Oliveira, Y.I.S., Adjafre, B.L., de Moraes, M.E.A., Aragao, G.F., 2019. Pharmacological effects of the isomeric mixture of alpha and beta amyrin from Protium heptaphyllum: A literature review. Fundam. Clin. Pharmacol. 33 (1), 4-12.
Saeidnia, S., Manayi, A., Gohari, A.R., Abdollahi, M., 2014. The story of beta-sitosterol-A review. European J. Med. Plants 4(5), 590-609.
Sandjo, L.P., Kuete, V., Siwe, X.N., Poumale, H.M.P., Efferth, T., 2016. Cytotoxicity of an unprecedented brominated oleanolide and a new furoceramide from the Cameroonian spice, Echinops giganteus. Nat. Prod. Res. 30(22), 1-9.
Sen, A., Dhavan, P., Shukla, K.K., Singh, S., Tejovathi, G., 2013. Analysis of IR, NMR and antimicrobial activity of β-sitosterol isolated from Momordica charantia. Sci. Secure J. Biotechnol. 1, 9-13.
Sultana, N., Afolayan, A.J., 2007. A novel daucosterol derivative and antibacterial activity of compounds from Arctotis arctotoides. Nat. Prod. Res. 21(10), 889-896.
Tabefam, M., Farimani, M.M., Danton, O., Ramseyer, J., Ebrahimi, S.N., Neuburger, M., Kaiser, M., Salehi, P., Potterat, O., Hamburger, M., 2018. Antiprotozoal isoprenoids from Salvia hydrangea. J. Nat. Prod. 81(12), 2682-2691.
Venditti, A., 2020. What is and what should never be: Artifacts, improbable phytochemicals, contaminants and natural products phytochemicals, contaminants and natural products. Nat. Prod. Res. 34(7), 1014-1031.