Modelling and Control of Mutation Dynamics of the Cancer Cells Employing Chemotherapy
Subject Areas :
vibration and control
Hami Tourajizadeh
1
,
zahra zarandi
2
,
zakie farbodi
3
,
ehsan sadeghi
4
1 - Department of Mechanical Engineering, Faculty of engineering,
University of Kharazmi, Tehran, Iran
2 - Department of Mechanical Engineering, Faculty of engineering,
University of Kharazmi, Tehran, Iran
3 - Department of Mechanical Engineering, Faculty of engineering,
University of Kharazmi, Tehran, Iran
4 - Departeman of Electrical Engineering, Sistan and Baluchestan University,
Zahedan, Iran
Received: 2021-01-09
Accepted : 2021-04-20
Published : 2022-03-01
Keywords:
References:
Kolch, W., Halasz, M., Granovskaya, M., and Kholodenko, B. N., The Dynamic Control of Signal Transduction Networks in Cancer Cells, Nature Reviews Cancer Vol. 15, No. 9, 2015, pp. 515-527.
Andasari, V., Gerisch, A., Lolas, G., South, A. P., and Chaplain, M. A., Mathematical Modeling of Cancer Cell Invasion of Tissue: Biological Insight from Mathematical Analysis and Computational Simulation, Journal of mathematical biology, Vol. 63, No. 1, 2011, pp. 141-171.
Ghaffari, P., Mardinoglu, A., Asplund, A., Shoaie, S., Kampf, C., Uhlen, M., and Nielsen, J., Identifying Anti-Growth Factors for Human Cancer Cell Lines Through Genome-Scale Metabolic Modeling, Scientific Reports, Vol. 5, No. 1, 2015, pp. 1-10.
Jackson, T. L., A Mathematical Investigation of the Multiple Pathways to Recurrent Prostate Cancer: Comparison with Experimental Data, Neoplasia, Vol. 6, No. 6, 2004, pp. 697-704.
Kohandel, M., Sivaloganathan, S., and Oza, A., Mathematical Modeling of Ovarian Cancer Treatments: Sequencing of Surgery and Chemotherapy, Journal of Theoretical Biology, Vol. 242, No. 2, 2006, pp. 62-68.
Fassoni, A. C., Yang, H. M., Modeling Dynamics for Oncogenesis Encompassing Mutations and Genetic Instability, Mathematical Medicine and Biology: A Journal of the IMA, Vol. 36, No. 2, 2019, pp.241-267.
Wang, S., Schättler, H., Optimal Control of a Mathematical Model for Cancer Chemotherapy Under Tumor Heterogeneity, Mathematical Biosciences & Engineering, Vol. 13, No. 6, 2016 pp. 1223
El-Garawany, A. H., Karar, M. E., and El-Brawany, M. A., Embedded Drug Delivery Controller for Cancer Chemotherapy Under Treatment Constrains, In 2017 Intl Conf on Advanced Control Circuits Systems (ACCS) Systems & 2017 Intl Conf on New Paradigms in Electronics & Information Technology (PEIT), 2017, pp. 264-271.
Kozusko, F., Chen, P. H., Grant, S. G., Day, B. W., and Panetta, J. C., A Mathematical Model of in Vitro Cancer Cell Growth and Treatment with The Antimitotic Agent Curacin A, Mathematical biosciences, Vol. 170, No. 1, 2001, pp. 1-16.
Swierniak, A., Polanski, A., and Kimmel, M., Optimal Control Problems Arising in Cell‐Cycle‐Specific Cancer Chemotherapy, Cell Proliferation, Vol. 29, No. 3, 1996, pp. 117-139.
Dingli, D., Cascino, M. D., Josić, K., Russell, S. J., and Bajzer, Ž, Mathematical Modeling of Cancer Radiovirotherapy, Mathematical Biosciences, Vol. 199, No. 1, 2006, pp. 55-78.
Vivek, P., Nikhil, P., Asha, R., and Vijander, S. Optimal ISA-PID-Based Drug Concentration Control in Cancer Chemotherapy, In Intelligent Communication, Control and Devices, 2018, pp. 165-171.
Kimmel, M., Swierniak, A., Control Theory Approach to Cancer Chemotherapy: Benefiting from Phase Dependence and Overcoming Drug Resistance, Tutorials in Mathematical Biosciences III, Springer, Berlin, Heidelberg, Vol. 1872, 2006, pp. 185-221.
Oke, S. I., Matadi, M. B., and Xulu, S. S., Optimal Control Analysis of a Mathematical Model for Breast Cancer, Mathematical and Computational Applications, Vol. 23, No. 2, 2018 pp. 21.
Bajger, P., Bodzioch, M., and Foryś, U., Singularity of Controls in A Simple Model of Acquired Chemotherapy Resistance, Discrete & Continuous Dynamical Systems-B, Vol. 24, No. 5, 2019, pp. 2039.
Panjwani, B., Mohan, V., Rani, A., and Singh, V., Optimal Drug Scheduling for Cancer Chemotherapy Using Two Degree of Freedom Fractional Order PID Scheme, Journal of Intelligent & Fuzzy Systems, Vol. 36, No. 3, 2019, pp. 2273-2284.
Dunne, L. W., Huang, Z., Meng, W., Fan, X., Zhang, N., Zhang, Q., and An, Z., Human Decellularized Adipose Tissue Scaffold as a Model for Breast Cancer Cell Growth and Drug Treatments, Biomaterials, Vol. 35, No. 18, 2014, pp. 4940-4949.
Khalili, P., Zolatash, S., and Vatankhah, R., Fuzzy Control for Drug Delivery in Cancerous Tumors Chemotherapy. Modares Mechanical Engineering, Vol. 19, No. 6, 2019, pp. 1467-1473.
Wodarz, D., Effect of Stem Cell Turnover Rates On Protection Against Cancer and Aging, Journal of Theoretical Biology, Vol. 245, No. 3, 2007, pp. 449-458.
Samuels, Y., Diaz Jr, L. A., Schmidt-Kittler, O., Cummins, J. M., DeLong, L., Cheong, I., Rago, C., Huso, D. L., Lengauer, C., Kinzler, K. W., and Vogelstein, B., Mutant PIK3CA Promotes Cell Growth and Invasion of Human Cancer Cells, Cancer Cell, Vol. 7, No. 6, 2005, pp. 561-573.
Ashkenazi, R., Gentry, S. N., and Jackson, T. L., Pathways to Tumorigenesis—Modeling Mutation Acquisition in Stem Cells and Their Progeny, Neoplasia, Vol. 10, No, 11, 2008, pp. 1170-IN6.
Sameen, S., Barbuti, R., Milazzo, P., Cerone, A., Del Re, M., and Danesi, R., Mathematical Modeling of Drug Resistance Due to KRAS Mutation in Colorectal Cancer, Journal of Theoretical Biology, Vol. 389, 2016, pp. 263-273.
Stiehl, T., Marciniak-Czochra, A., Stem Cell Self-Renewal in Regeneration and Cancer: Insights from Mathematical Modeling, Current Opinion in Systems Biology, Vol. 5, 2017, pp. 112-120.
Ascolani, G., Liò, P., Modeling Breast Cancer Progression to Bone: How Driver Mutation Order and Metabolism Matter, BMC Medical Genomics, Vol. 12, No. 6, 2019, pp. 106.
Ascolani, G., Liò, P., Modeling Breast Cancer Progression to Bone: How Driver Mutation Order and Metabolism Matter, BMC Medical Genomics, Vol. 12, No. 6, 2019, pp. 106.
Owolabi, K. M., Shikongo, A., Mathematical Modelling of Multi-Mutation and Drug Resistance Model with Fractional Derivative, Alexandria Engineering Journal, 2020.
Lee, M., Vasioukhin, V., Cell Polarity and Cancer–Cell and Tissue Polarity as A Non-Canonical Tumor Suppressor, Journal of Cell Science, Vol. 121, No. 8, 2008, pp. 1141-1150.
Wu, M., Kwon, H. Y., Rattis, F., Blum, J., Zhao, C., Ashkenazi, R., Jackson, T. L., Gaiano, N., Oliver, T., and Reya, T., Imaging Hematopoietic Precursor Division in Real Time, Cell Stem Cell, Vol. 1, No. 5, 2007, pp. 541-554.
Michor, F., Hughes, T. P., Iwasa, Y., Branford, S., Shah, N. P., Sawyers, C. L., and Nowak, M. A., Dynamics of Chronic Myeloid Leukaemia, Nature, Vol. 435, No. 7046, 2005, pp. 1267-1270.