Evaluating the Effect of the Second Invariant of Deformation Tensor in The Axial and Azimuthal Shear Deformations
Subject Areas :
Mechanical Engineering
Amir Ghafouri Sayyad
1
,
Ali Imam
2
,
Shahram Etemadi Haghighi
3
1 - Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 - Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 - Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
Received: 2021-04-19
Accepted : 2021-08-14
Published : 2022-03-01
Keywords:
References:
Hayes, M., Saccomandi, G., Topics in Finite Elasticity, Springer-Verlag, New York, USA, 2001, pp. 31-93, ISBN: 978-3-211-83336-0.
Gent, A. N., Elastic Instabilities in Rubber, International Journal of Non-Linear Mechanics, Vol. 40, No. 2-3, 2005, pp. 165-175, DOI: 1016/j.ijnonlinmec.2004.05.006.
Warne, D. A., Warne, P. G., Torsion in Nonlinearly Elastic Incompressible Circular Cylinders, International Journal of Non-Linear Mechanics, Vol. 86, 2016, pp. 158-166, DOI: 1016/j.ijnonlinmec.2016.08.008.
Gent, A. N., Thomas, A. G., Forms for the Stored (Strain) Energy Function for Vulcanized Rubber, Journal of Polymer Science, Vol. 28, No. 118, 1958, pp. 625–628, DOI: 10.1002/pol.1958.1202811814.
Pucci, E., Saccomandi, G., A Note on the Gent Model for Rubber-Like Materials, Rubber Chemistry and Technology, Vol. 75, No. 5, 2002, pp. 839-852, DOI: 5254/1.3547687.
Carroll, M. M., A Strain Energy Function for Vulcanized Rubbers, Journal of Elasticity, Vol. 103, No. 2, 2011, pp. 173-187, DOI: 10.1007/s10659-010-9279-0.
Gent, A. N., Extensibility of Rubber under Different Types of Deformation, Journal of Rheology, Vol. 49, No. 1, 2005, pp. 271-275, DOI: 1122/1.1835343.
Gent A. N., 1996, A New Constitutive Relation for Rubber, Rubber Chemistry and Technology, Vol. 69, No. 1, 1996, pp. 59-61, DOI: 10.5254/1.3538357.
Kilian, H. G., Equation of State of Real Networks, Polymer, Vol. 22, No. 2, 1981, pp. 209–217, DOI: 1016/0032-3861(81)90200-7.
Edwards, S. F., Vilgis, T., The Effect of Entanglements in Rubber Elasticity, Polymer, Vol. 27, No. 4, 1986, pp. 483–492, DOI: 1016/0032-3861(86)90231-4.
Zidi, M., Combined Torsion, Circular and Axial Shearing of a Compressible Hyperelastic and Prestressed, Journal of Applied Mechanics, Vol. 67, No. 1, 2000, pp. 33-40, DOI: 1115/1.321149.
Ogden, R.W., Chadwick, P., and Haddon, E. W., Combined Axial and Torsional Shear of a Tube of Incompressible Isotropic Elastic Material, The Quarterly Journal of Mechanics and Applied Mathematics, Vol. 26, No. 1, 1973, pp. 23-41, DOI: 1093/qjmam/26.1.23.
Jiang, X., Ogden, R. W., Some New Solutions for the Axial Shear of a Circular Cylindrical Tube of Compressible Elastic Material, International Journal of Non-linear Mechanics, Vol. 35, No. 2, 2000, pp. 361-369, DOI: 1016/S0020-7462(99)00041-4.
Kanner, L. M., Horgan, C. O., Inhomogeneous Shearing of Strain Stiffening Rubber-Like Hollow Circular Cylinders, International Journal of Solids and Structures, Vol. 45, No. 20, 2008, pp. 5464-5482, DOI: 1016/j.ijsolstr.2008.05.030.
Horgan, C. O., Saccomandi, G., Pure Axial Shear of Isotropic, Incompressible Nonlinearly Elastic Materials With Limiting Chain Extensibility, Journal of Elasticity Vol. 57, No. 3, 1999, pp. 307-319, DOI:1023/A:1007639129264.
Benjamin, C. C., Myneni, M., Muliana, A., and Rajagopal, K. R., Motion of a Finite Composite Cylindrical Annulus Comprised of Nonlinear Elastic Solids Subject to Periodic Shear, International Journal of Non-Linear Mechanics, Vol. 113, 2019, pp. 31-43, DOI: 1016/j.ijnonlinmec.2019.03.010.
Horgan, C. O., Saccomandi, G., and Sgura, I., A Two-Point Boundary-Value Problem for the Axial Shear of Hardening Isotropic Incompressible Nonlinearly Elastic Materials, SIAM Journal on Applied Mathematics, Vol. 62, No. 5, 2002, pp. 1712-1727, DOI: 1137/S0036139901391963.
Steinmann, P., Hossain, M., and Possart, G., Hyperelastic Models for Rubber-Like Materials: Consistent Tangent Operators and Suitability for Treloar’s Data, Archive of Applied Mechanics, Vol. 82, No. 9, 2012, pp. 1183-1217, DOI: 1007/s00419-012-0610-z.
Destrade, M., Saccomandi, G., and Sgura, I., Methodical Fitting for Mathematical Models of Rubber-Like Materials, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 473, No. 2198, 2017, pp. 20160811, DOI: 1098/rspa.2016.0811.
Zidi, M., Azimuthal Shearing and Torsion of a Compressible Hyperelastic and Prestressed Tube, International Journal of Non-Linear Mechanics, Vol. 3, No. 2, 2000, pp. 201-209, DOI: 1016/S0020-7462(99)00008-6.
Zidi, M., Large Shearing of a Prestressed Tube, Journal of Applied Mechanics, Vol. 67, No. 1, 2000, pp. 1-4, DOI:1115/1.321175.
Horgan, C. O., Saccomandi, G., Pure Azimuthal Shear of Isotropic, Incompressible Hyperelastic Materials with Limiting Chain Extensibility, International Journal of Non-Linear Mechanics, Vol. 3, No. 3, 2001, pp. 465-475, DOI: 1016/S0020-7462(00)00048-2.
Dagher, M. A., Soldatos, K. P., Pure Azimuthal Shear Deformation of an Incompressible Tube Reinforced by Radial Fibres Resistant in Bending, The IMA Journal of Applied Mathematics, Vol. 79, No. 5, 2014, pp. 848–868, DOI: 1093/imamat/hxu013.
Bustamante, R., Some Universal Solutions for a Class of Incompressible Elastic Body that is not Green Elastic: The Case of Large Elastic Deformations, The Quarterly Journal of Mechanics and Applied Mathematics, Vol. 73, No. 2, 2020, pp. 177-199, DOI: 1093/qjmam/hbaa006.
El Hamdaoui, M., Merodio, J., and Ogden, R. W., Deformation Induced Loss of Ellipticity in an Anisotropic Circular Cylindrical Tube, Journal of Engineering Mathematics, Vol. 109, No. 1, 2018, pp. 31-45, DOI: 1007/s10665-017-9904-z.
Horgan, C. O., Saccomandi, G., Helical Shear for Hardening Generalized Neo-Hookean Elastic Materials, Mathematics and Mechanics of Solids, Vol. 8, No. 5, 2003, pp. 539-559, DOI: 10.1177/10812865030085007.
Anssari-Benam, A., Bucchi, A., A Generalised Neo-Hookean Strain Energy Function for Application to The Finite Deformation of Elastomers, International Journal of Non-Linear Mechanics, Vol. 128, 2021, pp. 103626, DOI: 1016/j.ijnonlinmec.2020.103626.
Ghafouri Sayyad, A., Imam, A., and Etemadi Haghighi, S., Evaluating the Response of a Modified Gent-Thomas Strain Energy Function Having Limiting Chain Extensibility Condition in Torsion and Azimuthal Shear, Polymers and Polymer Composites, 2021, DOI: 1177/09673911211003394.
Marckmann, G., Verron, E., Comparison of Hyperelastic Models for Rubber-Like Materials, Rubber Chemistry and Technology, 79, No. 5, 2006, pp. 835-858, DOI: DOI:10.5254/1.3547969.
Ogden, R. W., Non-Linear Elastic Deformations, Ellis Horwood, Chichester, England, 1984, pp. 224-326, ISBN: 0-8-5312-273-3.
Ogden, R.W., Saccomandi, G., and Sgura, I., Fitting Hyperelastic Models to Experimental Data, Computational Mechanic, Vol. 34, No. 6, 2004, pp. 484-502, DOI: 1007/s00466-004-0593-y.
Abramowitz, M., Stegun I. A., Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Dover, New York, USA, 1965, pp. 885-887, ISBN: 978-0486612720.