Mechanical Buckling of Circular Orthotropic Bilayer Nanoplate Embedded in an Elastic Matrix under Radial Compressive Loading
Subject Areas : micro and nano mechanicsM. Ahmadpour 1 , M.E. Golmakani 2 , M.N. Sadraee Far 3
1 - Department of Mechanical Engineering,
Mashhad branch, Islamic Azad University, Mashhad, Iran
2 - Department of Mechanical Engineering,
Mashhad branch, Islamic Azad University, Mashhad, Iran
3 - Department of Mechanical Engineering,
Ferdowsi University of Mashhad, Mashhad, Iran
Keywords:
Abstract :
[1] Sakhaee-Pour, A., Ahmadian, M. T., and Vafai, A., Applications of Single-Layered Graphene Sheets as Mass Sensors and Atomistic Dust Detectors, Solid State Commun, Vol. 145, 2008, pp. 168–172.
[2] Wang, J., Li, Z., Fan, G., Pan, H., Chen, Z., and Zhang, D., Reinforcement with Graphene Nano-Sheets in Aluminum Matrix Composites, Scr. Mater, Vol. 66, 2012, pp. 594–597.
[3] Drexler, K. E., Nanosystems: Molecular Machinery, Manufacturing and Computation, John Wiley & Sons Inc., 1992.
[4] Craighead, H. G., Nano Electro Mechanical Systems, Science, Vol. 290, 2000, pp. 1532–1535.
[5] Li, X., Bhushan, B., Takashima, K., Baek, C. W., and Kim, Y. K., Mechanical Characterization of Micro/Nanoscale Structures for MEMS/NEMS Applications Using Nanoindentation Techniques, Ultramicroscopy, Vol. 97, 2003, pp. 481–494.
[6] Pouresmaeeli, S., Fazelzadeh, S. A., and Ghavanloo, E., Exact Solution for Nonlocal Vibration of Double-Orthotropic Nanoplates Embedded in Elastic Medium, Composites Part B, Vol. 43, No. 8, 2012, pp. 3384–3390.
[7] Farajpour, A., ArabSolghar, A. R., and Shahidi, A. R., Postbuckling Analysis of Multilayered Graphene Sheets Under Non-Uniform Biaxial Compression, Physica E, Vol. 47, 2013, pp.197–206.
[8] Zhou, S. J., Li, Z. Q., Length Scales in The Static, Dynamic Torsion of a Circular Cylindrical Micro-Bar, J. Shanghai Univ. Technol., Vol. 31, 2001, pp. 401–407.
[9] Fleck, N. A., Hutchinson, J. W., Strain Gradient Plasticity, Adv. Appl. Mech., Vol. 33, 1997, pp. 296–358.
[10] Akgoz, B., Civalek, O., A Size-Dependent Shear Deformation Beam Model Based on the Strain Gradient Elasticity Theory, Internat. J. Engrg. Sci., Vol. 70, 2013, pp. 1–14.
[11] Malikan, M., Nguyen, V. B., Buckling Analysis of Piezo-Magnetoelectric Nanoplates in Hygrothermal Environment Based On a Novel One Variable Plate Theory Combining with Higher-Order Nonlocal Strain Gradient Theory, Physica E: Low-Dimensional System and Nanostructures, Vol. 102, 2018, pp. 8-28.
[12] Akgoz B., Civalek O., Free vibration analysis of axially functionally graded tapered Bernoulli–Euler microbeams based on the modified couple stress theory, Compos. Struct., Vol. 98, 2013, pp. 314–322.
[13] Yang F., Chong A.C.M., Lam D.C.C., Tong P., Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct., Vol. 39, 2002, pp. 2731–2743.
[14] Malikan, M., Elctro-Mechanical Shear Buckling of Piezoelectric Nanoplate Using Modified Couple Stress Theory Based On Simplified First Order Shear Deformation Theory, Aplied Mathematical Modeling, Vol. 48, 2017, pp. 196-207.
[15] Eringen, A. C., Edelen, D. G. B., On Nonlocal Elasticity, Internat. J. Engrg. Sci., Vol. 10, 1972, pp. 233–248.
[16] Eringen, A. C., Nonlocal Continuum Field Theories, Springer, New York, 2002.
[17] Eringen, A. C., Nonlocal Continuum Mechanics Based on Distributions, Internat. J. Engrg. Sci., Vol. 44, 2006, pp. 141–147.
[18] Malikan, M., Dimitri, R., and Tornabene, F., Transient Response of Oscillated Carbon Nanotubes with an Internal and External Damping, Composites Part B: Engineering, Vol. 158, 2019, pp. 198-205.
[19] Reddy, J. N., Nonlocal Theories for Bending, Buckling and Vibration of Beams, Internat. J. Engrg. Sci., Vol. 45, 2007, pp. 288–307.
[20] Reddy, J. N., Pang, S. D., Nonlocal Continuum Theories of Beams for The Analysis of Carbon Nanotubes, J. Appl. Phys., Vol. 103, 2008, 023511.
[21] Murmu, T., Pradhan, S. C., Buckling Analysis of a Single-Walled Carbon Nanotube Embedded in an Elastic Medium Based On Nonlocal Elasticity and Timoshenko Beam Theory and Using DQM, Physica E, Vol. 41, 2009, pp. 1232–1239.
[22] Murmu, T., Pradhan, S. C., Thermo-Mechanical Vibration of a Single-Walled Carbon Nanotube Embedded in an Elastic Medium Based On Nonlocal Elasticity Theory, Comput. Mater. Sci., Vol. 46, 2009, pp. 854–859.
[23] Wang, C. M., Duan, W. H., Free Vibration of Nanorings/Arches Based On Nonlocal Elasticity, J. Appl. Phys., Vol. 104, 2008, 014303.
[24] Demir, C., Civalek, O., Torsional and Longitudinal Frequency and Wave Response of Microtubules Based On the Nonlocal Continuum and Nonlocal Discrete Models, Appl. Math. Model, Vol. 37, No. 22, 2013, pp. 9355–9367.
[25] Civalek, O., Demir, C., and Akgoz, B., Static Analysis of Single Walled Carbon Nanotubes (SWCNT) Based on Eringen’s Nonlocal Elasticity Theory, Int. J. Eng. Appl. Sci., Vol. 2, 2009, pp. 47–56.
[26] Zenkour, A. M., Nonlocal Transient Thermal Analysis of a Single-Layered Graphene Sheet Embedded in Viscoelastic Medium, Physica E, Vol. 97, 2016, pp. 87–97.
[27] Shen, H., Zhang, C. L., Torsional Buckling and Postbuckling of Double-Walled Carbon Nanotubes by Nonlocal Shear Deformable Shell Model, Compos. Struct., Vol. 92, 2010, pp. 1073–1084.
[28] Poot, M., van der Zant, H. S. J., Nanomechanical Properties of Few-Layer Graphene Membranes, Appl. Phys. Lett., Vol. 92, 2008, 063111.
[29] Pradhan, S. C., Phadikar, J. K., Small Scale Effect On Vibration of Embedded Multilayered Graphene Sheets Based On Nonlocal Continuum Models, Phys. Lett. A, Vol. 373, 2009, pp. 1062–1069.
[30] Pradhan, S. C., Buckling of Single Layer Graphene Sheet Based On Nonlocal Elasticity and Higher Order Shear Deformation Theory, Phys. Lett. A, Vol. 373, No. 45, 2009, pp. 4182–4188.
[31] Reddy, C. D., Rajendran, S., and Liew, K. M., Equilibrium Configuration and Continuum Elastic Properties of Finite Sized Graphene, Nanotechnology, Vol. 17, 2006, pp. 864–870.
[32] Shokrieh, M. M., Rafiee, R., Prediction of Young’s Modulus of Graphene Sheets and Carbon Nanotubes Using Nanoscale Continuum Mechanics Approach, Mater. Des., Vol. 31, 2010, pp. 790–795.
[33] Sakhaee-Pour, A., Elastic Buckling of Single-Layered Graphene Sheet, Comput. Mater. Sci., Vol. 45, No. 2, 2009, pp. 266–270.
[34] Ansari, R., Rajabiehfard, R., and Arash, B., Nonlocal Finite Element Model for Vibrations of Embedded Multi Layered Graphene Sheets, Comput. Mater. Sci., Vol. 49, 2010, pp.831–838.
[35] Jomehzadeh, E., Saidi, A. R., A Study On Large Amplitude Vibration of Multilayered Graphene Sheets, Comput. Mater. Sci., Vol. 50, 2011, pp. 1043–1051.
[36] Aksencer, T., Aydogdu, M., Levy Type Solution Method for Vibration and Buckling of Nanoplates Using Nonlocal Elasticity Theory, Physica E, Vol. 43, 2011, pp. 954–959.
[37] Ghasemi, A., Dardel, M., Ghasemi, M. H., and Barzegari, M. M., Analytical Analysis of Buckling and Postbuckling of Fluid Conveying Multi-Walled Carbon Nanotubes, Appl. Math. Model, Vol. 37, 2013, pp. 4972–4992.
[38] Farajpour, A, Danesh, M, and Mohammadi, M. Buckling Analysis of Variable Thickness Nanoplates Using Nonlocal Continuum Mechanics, Physica E., Vol. 44, 2011, pp. 719–727.
[39] Pradhan, S. C., Murmu, T., Thermo-Mechanical Vibration of fgm Sandwich Beam Under Variable Elastic Foundations Using Differential Quadrature Method, J. Sound Vib., Vol. 321, 2009, pp. 342–362.
[40] Pradhan, S. C., Kumar, A., Vibration Analysis of Orthotropic Graphene Sheets Embedded in Pasternak Elastic Medium Using Nonlocal Elasticity Theory and Differential Quadrature Method, Comput. Mater. Sci., Vol. 50, 2010, pp. 239–245.
[41] Civalek, O., Akgoz, B., Vibration Analysis of Micro-Scaled Sector Shaped Graphene Surrounded by an Elastic Matrix, Comput. Mater. Sci., Vol. 77, 2013, pp. 295–303.
[42] Tsiatas, G. C., Yiotis, A. J., Size Effect On the Static, Dynamic and Buckling Analysis of Orthotropic Kirchhoff-Type Skew Micro-Plates Based On a Modified Couple Stress Theory: Comparison with The Nonlocal Elasticity Theory, Acta Mech., Vol. 226, 2015, pp. 1267–1281.
[43] Civalek, O., Elastic Buckling Behavior of Skew Shaped Single-Layer Graphene Sheets, Thin Solid Films, Vol. 550, 2013, pp. 450–458.
[44] Zenkour, A. M., Sobhy, M., Nonlocal Elasticity Theory for Thermal Buckling of Nanoplates Lying On Winkler–Pasternak Elastic Substrate Medium, Physica E, Vol. 53, 2013, pp. 251–259.
[45] Ansari, R., Sahmani, S., Prediction of Biaxial Buckling Behavior of Single-Layered Graphene Sheets Based On Nonlocal Plate Models and Molecular Dynamics Simulations, Applied Mathematical Modelling, Vol. 37, 2013, pp. 7338–7351.
[46] Farajpour, A., Dehghany, M., and Shahidi, A. R., Surface and Nonlocal Effects On the Axisymmetric Buckling of Circular Graphene Sheets in Thermal Environment, Composites: Part B, Vol. 50, 2013, pp. 333–343.
[47] Radebe, I. S., Adali, S., Buckling and Sensitivity Analysis of Nonlocal Orthotropic Nanoplates with Uncertain Material Properties, Composites: Part B, Vol. 56, 2014, pp. 840–846.
[48] Ansari, R., Shahabodini, A., Shojai, M. F., Mohammadi, V., and Gholami, R., On the Bending and Buckling Behaviors of Mindlin Nanoplates Considering Surface Energies, Physica E, Vol. 57, 2014, pp. 126–137.
[49] Anjomshoa, A., Shahidi, A. R., Hassani, B., and Jomehzadeh, E., Finite Element Buckling Analysis of Multi-Layered Graphene Sheets on Elastic Substrate Based on Nonlocal Elasticity Theory, Applied Mathematical Modelling, Vol. 38, No. 24, 2014, pp. 5934–5955.
[50] Mohammadi, M., Farajpou,r A., Moradi, A., and Ghayour, M., Shear Buckling of Orthotropic Rectangular Graphene Sheet Embedded in an Elastic Medium in Thermal Environment, Composites Part B, Vol. 56, 2014, pp. 629–637.
[51] Radic, N., Jeremic, D., Trifkovic, S., and Milutinovic, M., Buckling Analysis of Double-Orthotropic Nanoplates Embedded in Pasternak Elastic Medium Using Nonlocal Elasticity Theory, Composites: Part B, Vol. 61, 2014, pp. 162–171.
[52] Sarrami-Foroushani, S., Azhari, M., On the use of Bubble Complex Finite Strip Method in the Nonlocal Buckling and Vibration Analysis of Single-Layered Graphene Sheets, International Journal of Mechanical Sciences, Vol. 85, 2014, pp. 168-178.
[53] Sarrami-Foroushani, S., Azhari, M., Nonlocal Vibration and Buckling Analysis of Single and Multi-Layered Graphene Sheets Using Finite Strip Method Including Van Der Waals Effects, Physica E: Low-dimensional Systems and Nanostructures, Vol. 57, 2014, pp. 83-95.
[54] Murmu, T., Sienz, J., Adhikari, S., and Arnold, C., Nonlocal Buckling of Double-Nanoplate-Systems Under Biaxial Compression, Composites: Part B, Vol. 44, 2013, pp. 84–94.
[55] Farajpour, A., Shahidi, A. R., Mohammadi, M., and Mahzoon, M., Buckling of Orthotropic Micro/Nanoscale Plates Under Linearly Varying in-Plane Load Via Nonlocal Continuum Mechanics, Composite Structures, Vol. 94, 2012, pp. 1605–1615.
[56] Farajpour, A., Mohammadi, M., Shahidi, A. R., and Mahzoon, M., Axisymmetric Buckling of the Circular Graphene Sheets with the Nonlocal Continuum Plate Model, Physica E, Vol. 43, 2011, pp. 1820–1825.