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1 INTRODUCTION 

In recent years, nanoplates such as Graphene Sheets 

(GSs) have received huge attention from the researcher 

community for their superior properties and practical 

applications in many fields such as superfast 

microelectronics, micro- or nano-electromechanical 

systems (MEMS or NEMS), biomedical, bioelectrical, 

and nanocomposites [1–5]. Single Layered Graphene 

Sheets (SLGSs) are defined as a flat one-atom-thick 

carbon tightly packed into a two-dimensional 

honeycomb lattice. Since the mechanical behavior of 

SLGSs plays a major role in their potential applications, 

the mechanical analysis of nanoplates has become a 

subject of primary interest in recent studies [6].  

The traditional continuum theory is considered as a scale 

free theory and thus lacks validity to anticipate the 

mechanical behaviors of nanostructures properly [7]. 

Recently, size-dependent continuum modeling of 

nanostructures has become popular among the scientific 

community because controlled experiments on 

nanoscale are difficult to implement and molecular 

dynamic simulations are highly computationally 

expensive and are not suitable for analyzing large scale 

systems. A variety of size-dependent continuum theories 

have been so far introduced such as couple stress theory 

[8], strain gradient elasticity theory [9-11] modified 

couple stress theory [12-14] and nonlocal elasticity 

theory [15–18] among which the nonlocal elasticity 

theory has been the most widely applied one [19–26]. 

Based on this theory, a lot of studies have so far 

examined buckling and vibration behaviors of SLGSs as 

well as their properties [27–42]. Civalek [43] studied 

elastic buckling behavior of skew shaped single-layer 

graphene sheets. He found that the critical buckling 

loads predicted by pure shear loading are always bigger 

than those predicted by the other loadings. The effect of 

the aspect ratio on buckling loads grows significantly for 

small skew angles of the skew graphene. Zenkour and 

Sobhy [44] investigated nonlocal elasticity theory for 

thermal buckling of nanoplates lying on Winkler–

Pasternak elastic substrate medium. Their findings 

showed that the nanoplate with a small side-to-thickness 

ratio faces a large critical buckling temperature rise and 

the buckling temperature rise of a clamped-free plate is 

much greater than that of a plate under other boundary 

conditions.  

Ansari and Sahmani [45] investigated prediction of 

biaxial buckling behavior of single-layered graphene 

sheets based on nonlocal plate models and molecular 

dynamics simulations. They reported that as opposed to 

the chirality which is trivial in the biaxial response of 

SLGSs, the varieties of types of nonlocal plate model 

make a relatively significant difference between the 

proposed appropriate values of nonlocal parameter 

corresponding to each one. Farajpour et al. [46] studied 

surface and nonlocal effects on the axisymmetric 

buckling of circular graphene sheets in thermal 

environment. Radebe and Adali [47] investigated 

buckling and sensitivity analysis of nonlocal orthotropic 

nanoplates with uncertain material properties. They 

found the most conservative buckling load given the 

bound on the uncertainties.  

Ansari et al. [48] studied on the bending and buckling 

behaviors of Mindlin nanoplates considering surface 

energies. They showed that when the nanoplate is under 

biaxial loading, the critical buckling load corresponding 

to the lower modes is more sensitive to the surface 

energies. Anjomshoa et al. [49] investigated finite 

element buckling analysis of multi-layered graphene 

sheets on elastic substrate based on nonlocal elasticity 

theory. Mohammadi et al. [50] studied shear buckling of 

orthotropic rectangular graphene sheet embedded in an 

elastic medium in thermal environment. They found that 

unlike the low or room temperature, where the critical 

shear buckling load with thermal effect is larger than the 

critical shear buckling load without thermal effects, 

thermal load ratio is smaller than unity at high 

temperature environment.  

Radic et al. [51] investigated buckling analysis of 

double-orthotropic nanoplates embedded in Pasternak 

elastic medium using nonlocal elasticity theory. They 

found that nonlocal effect imposes a stronger influence 

on higher buckling modes. Sarrami and Azhari [52] 

conducted a study on the use of bubble complex finite 

strip method in the nonlocal buckling and vibration 

analysis of single-layered grapheme sheets. They 

showed that the nanoplate is more sensitive to the 

nonlocal effects in the case of shear loading rather than 

compressive loading. Sarrami and Azhari [53] studied 

nonlocal vibration and buckling analysis of single and 

multi-layered graphene sheets using finite strip method 

including van der Waals effects. They found that 

nonlocal parameter effect is more prominent in the 

sheets which are more stiffened due to the partly tension 

loading or because of more rigid end conditions. Murmu 

et al. [54] studied nonlocal buckling of double-

nanoplate-systems under biaxial compression. They 

concluded that increase of stiffness parameter brings 

uniaxial and biaxial buckling phenomenon closer while 

increase of aspect ratio widens uniaxial and biaxial 

buckling phenomenon. Farajpour et al. [55] investigated 

buckling of orthotropic micro/nanoscale plates under 

linearly varying in-plane load via nonlocal continuum 

mechanics. They showed that in the case of pure in-plane 

bending, the nonlocal effects are relatively more than 

other cases. Farajpour et al. [56] studied axisymmetric 

buckling of the circular graphene sheets with the 

nonlocal continuum plate model. They indicated that the 

difference between the two boundary conditions in non-

dimensional buckling load decreases with increasing 

nonlocal parameter.  
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A review of literature shows that no literature has been 

taken into account the behaviour of circular bilayer 

graphene sheet embedded in an elastic matrix 

considering the effect of small scale parameter based on 

nonlocal continuum mechanics. This motivates us to 

investigate this problem here. So in order to fill this gap, 

the present paper is conducted to investigate the 

mechanical buckling analysis of circular bilayer 

graphene sheet with clamped and simply supported 

boundary condition using nonlocal continuum 

mechanics and the differential quadrature method. Using 

the principle of virtual work, the nanoplate equilibrium 

equations are derived in terms of the generalized 

displacements based on FSDT using the nonlocal 

differential constitutive relations of Eringen and the von 

Karman nonlinear strains. To verify the present results 

and formulations, some comparison studies are carried 

out between the obtained results and the available 

solutions in the literature. Excellent agreement between 

the obtained and available results is observed. Finally, 

the small scale effects on the buckling behavior of 

nanoplates are investigated by considering various 

parameters such as small scale parameter, boundary 

conditions, Winkler and Pasternak elastic foundations, 

aspect ratio. 

2 GOVERNING EQUATIONS 

The SLGS is modeled as a circular nanoplate and the 

elastic medium is defined by a two-parameter Pasternak 

elastic foundation. The geometry of a radially circular 

graphene plate with thickness h, radius r, under buckling 

load N is shown in “Fig. 1”. According to the first-order 

shear deformation theory, the displacement field can be 

expressed as follows: 

 

0

0

( , ) ( ) ( )

( , ) 0

( ) ( )

= +

=

=

u r z u r z r

v r z

w r w r



 (1) 

 

Where u and w are the displacement components of the 

midplane along the r and z directions, respectively. Also, 

 denotes the rotational function of the transverse 

normal about the z axis. The linear 0 and nonlinear 1 

Von-Karman strain fields are as follows: 
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Fig. 1 The circular and annular bilayer graphene sheets in 

an atomic figure bridged on an elastic foundation. 
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By substituting “Eq. (3)” into “Eq. (2)”, the Von-

Karman strain fields used can be expressed as: 
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Where, r and  are the normal strains and ɣrz is the 

shear strain. In non-local elasticity theory, the effects of 

small scale and interatomic bonds come directly to the 

constitutive equations as material parameters [9]. 

Eringen presented a differential form of the non-local 

constitutive equation from non-local balance law as 

follows [12-13]: 
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In which, a  is internal characteristic length and 0e  is 

material constant which is defined by experiment. The 

parameter 0e a  is the small-scale parameter and 

depends on boundary condition, chirality, mode shapes, 

number of walls and the nature of motions. Also, 2 is 

the Laplacian operator which is defined by:  
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The non-local force, moment and shear force 

components , , ,NL NL NL NL
r rN N M M   and NL

rQ  are 

introduced as follows: 
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By substituting stress values into resultant forces, the 

following constitutive relations are obtained: 
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By substituting strains and stiffness matrix in terms of 

displacements and material constant, respectively, the 

following relations are obtained:  
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Based on the principle of minimum total potential 

energy, the following variations can be obtained for a 

system in equilibrium state: 
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Where,  is the variation symbol. Also, U and  denote 

strain energy and potential of applied forces, 

respectively. By using the nonlocal stress resultants and 

energy relations, the non-local governing equations are 

defined as follows: 
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In which, “Eqs. (11)” are related to the upper layer and 

“Eqs. (12)” are corresponded to the lower layer. Also, 

wk  and 
pk  are the Winkler and Pasternak stiffness 

coefficient of the elastic foundation, respectively and 0k  

is the linear van der Waals interaction coefficient. Using 

“Eqs. (9), (11) and (12)” yield the following relations: 
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Then, by substituting “Eq. (6)” in 2nd and 5th relations of 

“Eq. (13)”, they are transformed as follows: 
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The following boundary conditions are defined for both 

inner and outter edges of annular plates based on FSDT 

as follows: 

 

Simply supported boundary condition (S)  

0  = = =ru w M (16) 
 

Clamped boundary condition (C)  

0  = = =u w  (17) 

3 SOLUTION 

In this paper, in order to solve the equilibrium equations, 

the Differential Quadrature Method (DQM) has been 

employed. This method offers accuracy, efficiency, 

convenience and great potential in solving complicated 

partial differential equations [28]. Therefore, the DQ 

method, as well as simple formulation, provides low 

computational cost in contrast with other numerical 

methods such as Dynamic Relaxation (DR), Finite 

Difference (FD), Finite Element (FE), and etc. The 

Differential Quadrature (DQ) method was introduced by 

Bellman and Casti [46-47]. Recently, many researchers 

have extensively supported the application of the DQM 

for investigation of nanostructures [48–51]. The basic 

idea of the differential quadrature method is based on the 

approximation of partial derivative of a function with 

respect to a space variable at a discrete point as a 

weighted linear sum of the function values at all discrete 

points in the whole domain. Its weighting coefficients 

solely depend on the grid spacing. Therefore, every 

partial differential equation can be simplified to a 

number of algebraic equations using these coefficients 

[52]. DQM can be subdivided into several subsets with 

respect to the applied function and satisfied types of 

boundary conditions. In this paper, polynomial function 

and direct substitution technique are used for this goal. 

By using the DQM, derivatives of a function rf  at point 

ir  are defined as follows: 
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( )n
ikA is the respective weighting coefficient related to 

the nth-order derivative obtained as follows: 
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In which, M is the number of grid points along r  

direction.  

It is more offered to use the grid point distribution which 

is based on Gauss–Chebyshev–Lobatto points to gain 

more accurate results [32]. According to the Gauss–

Chebyshev– Lobatto grid point’s distribution, the 

coordinates of the grid points are as follows: 
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With implementation of DQM into the “Eq. (13)”, the 

following buckling equations are obtained: 
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4 RESULT AND DISCUSSION 

In this paper, mechanical buckling behavior of the 

orthotropic nanoplate embedded in an elastic matrix is 

investigated based on nonlocal FSDT and von Karman 

nonlinear strains. As mentioned, the elastic matrix is 

modeled as a Pasternak two parameters elastic 

foundation. In the parametric study, unless stated 

otherwise, the following foundation coefficients, 

material properties and dimensions are used for the 

nanoplate [38], [51]: 
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 (24) 

In this section, some comparison studies have been 

presented for verifying the results and formulations 

firstly and then the effects of different parameters are 

considered on the mechanical buckling of circular and 

annular bi-layered nanoplate. 

4.1. Comparison Study  

In this part, the current results are compared with those 

of [56] for non-dimensional linear buckling load of 

isotropic circular nanoplate with clamped boundary 

conditions which is defined in “Eq. (25)”. 
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(25) 

 

In which, b is the critical buckling load. As seen in 

“Table 1”, the buckling load is presented for different 

values of nonlocal parameters and radiuses with

0.335  , 0.3= =h nm  . As indicated, the results of 

present work are in good agreement with those of [56]. 

However, a minor difference between the current results 

and those obtained by [56] is due to the existing 

differences of defined boundary conditions in each 

work, solution methodology and also type of plate 

theory (used FSDT and CPT). 

 

 

Table 1 Comparison of critical buckling load of isotropic 

annular/circular bilayer graphene sheet obtained by the 

present study (FSDT) with those of [56] (CPT) of clamped 

boundary condition. 

( )%b 
 

Small scale effect (nm) 

2 1.5 1 0.5 0 Radius 
(nm) 

0.1986 0.3003 0.4800 0.7487 0.9205 4 
0.2019 0.3077 0.4918 0.7671 0.9430 4[56] 
0.1576 0.2162 0.2945 0.3763 0.4146 6 
0.1593 0.2186 0.2977 0.3803 0.4191 6[56] 
0.1222 0.1546 0.1906 0.2216 0.2343 8 
0.1229 0.1555 0.1918 0.2230 0.2358 8[56] 
0.0947 0.1130 0.1311 0.1450 0.1503 10 
0.0951 0.1134 0.1316 0.1455 0.1509 10[56] 

4.2. Parametric Study 

In this section, several parametric studies are presented 

to reveal the effects of nonlocal parameter, radius, van 

der Waals variation, elastic foundation and boundary 

condition on the buckling load response of orthotropic 

bilayer graphene sheet based on nonlocal continuum 

mechanics. In order to show the importance of nonlocal 

parameter, “Fig. 2” shows the effect of nonlocal 

parameter on the buckling load in terms of radius of 

nanoplate for (a) clamped and (b) simply-supported 

boundary conditions. As seen, with increase of small 

scale parameter, the buckling load decreases. Also, with 

raising the radius of nanoplate the slope of curves 

reduces.  

As indicated the buckling load of simply supported cases 

is lower than those of clamped ones in different values 

of small scale parameters. It is obvious that with increase 

of nanoplate radius from 5 to 20 nm, the slope of curves 

reduces and by increasing the radius from 20 nm the 

slope increases. In radius of 5 nm and small scale effect 

of 2 nm, the difference between the results obtained with 

local and nonlocal cases has the greatest value and this 

difference decreases by raising the radius from 5 to 20 

nm. Also, by increase of small scale effect from 1 nm, 

the buckling load decreases first and then increases, but 

in small scale effect of 1.5 and 2 nm, with increase of 

radius, the buckling load increases continuously with 

smooth slope.  

Unlike the simply supported boundary condition, in 

clamped case with increase of radius the difference 

between the local and nonlocal results decreases. Also, 

by increasing nanoplate radius, the difference of 

buckling load is higher in simply supported boundary 

condition compared to clamp one. 
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(a) 

 
(b) 

Fig. 2 Critical buckling load based on radius for: (a): 

clamped and (b): simply supported boundary conditions with 

various small scale parameters. 
 

In “Fig. 3” the effect of van der Waals variation on the 

buckling load has been studied for different small scale 

parameters with (a) clamped and (b) simply supported 

boundary conditions. It can be concluded that in 

clamped boundary condition, the difference between 

local and nonlocal models is larger than the simply 

supported one and as seen, unlike calmped boundary 

condition, in e0a=0.5 nm there is no difference between 

local and nonlocal results in simply supported boundary 

condition. Also, as indicated, increase of vdW 

coefficient leads to increase of critical buckling load 

smoothly. The trend continues to the point that slope of 

the curves approximates to zero after a certain value in 

both boundary conditions and it can be seen that increase 

of vdW coefficient has no impact on critical buckling 

load after this value. 

 
(a) 

 
(b) 

Fig. 3 Effect of vdW interaction coefficient on the critical 

buckling load for: (a): clamped and (b): simply supported 

boundary conditions with various nonlocal parameters. 
 

Figure 4 shows the effect of vdW interaction coefficient 

on the critical buckling load for different radiuses with 

(a) clamped and (b) simply-supported boundary 

conditions. From these figures increasing radius leads to 

increase of critical buckling load. Also, it is observed 

that with increasing vdW interaction coefficient the 

difference between the results obtained in nanoplate 

radius from 5 to 20 nm is smaller than this difference in 

radius from 25 nm up to the end. By comparing Figures 

a and b it can be concluded that this event is more 

noticeable in simply supported boundary condition case 

compared to clamped one.  
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(a) 

 
(b) 

Fig. 4 Effect of vdW interaction coefficient on the critical 

buckling load for different radiuses in: (a): clamped and (b): 

simply supported boundary conditions. 
 

In “Fig. 5”, the effect of Winkler module on the buckling 

load is considered in different values of small scale 

parameter for (a) simply supported and (b) clamped 

boundary conditions. As it witnesses, by increasing the 

Winkler elastic foundation buckling load rises for both 

local and nonlocal models, but this behavior is more 

considerable in local state compared to nonlocal one for 

both types of boundary conditions. Also, by increase of 

small scale parameter the slope of curves leads to 

decrease. Furthermore, the difference between the 

results obtained with local and nonlocal cases is much 

greater in clamped compared to simply supported 

boundary condition and this trend is more significant 

with increase of Winkler module. As seen the small scale 

parameter does not have any effect on critical buckling 

load of the cases without elastic medium in simply 

supported boundary condition. However, unlike the 

clamped boundary condition, in simply supported case 

the influence of small scale parameter up to e0a=1 nm 

remains almost constant on the results in the Winkler 

elastic foundation of 1 GPa per nanometer. 

 

 
(a) 

 
(b) 

Fig. 5 Effect of Kw on critical buckling load for various 

small scale parameter with: (a): simply supported and (b): 

clamped boundary conditions. 
 

Figure 6 shows the effect of shear module (Kp) of the 

elastic foundation on critical buckling load and two 

cases of nonlocal and local models with (a) simply 

supported and (b) clamped boundary conditions. As it is 

seen, increase in Kp leads to increase in critical buckling 
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load. In addition, from “Fig. 5”, it can be found that the 

slope of the curves is wider in 0 0.5 pk pa.m rather 

than the other value of Kp and therefore the effect of Kp 

is more significant in this range. Also, as seen, unlike the 

calmped boundary condition in simply supported case 

with increase of Kp there is no difference between the 

results obtained from local and nonlocal models with 

small scale parameter of 0.5 nm. 

 
(a) 

 
(b) 

Fig. 6 Effect of Kp on critical buckling load for various 

small scale parameters with: (a): simply supported and (b): 

clamped boundary conditions. 

5 CONCLUSION 

In this paper, the mechanical buckling analysis of 

circular bilayer graphene sheet embedded in an elastic 

matrix is investigated based on nonlocal elasticity 

theory. Using the principle of virtual work, the nonlinear 

equilibrium equations are obtained in terms of the 

generalized displacements based on first order shear 

deformation theory using the nonlocal differential 

constitutive relations of Eringen and the von Karman 

nonlinear strains. Differential quadrature method is used 

to solve the governing equations for simply supported 

and clamped boundary conditions. To verify the present 

results and formulations, some comparison studies are 

carried out between the obtained results and the 

available solutions in the literature. From the results of 

present study following conclusions are noticeable: 

• With increase of small scale parameter, the 

buckling load decreases. The slope of this reduction 

reduces with raising the radius of nanoplate. 

• The critical buckling load of simply supported 

cases are lower those of clamped ones in different values 

of small scale parameters.  

• The difference of buckling load between results 

obtained with local and nonlocal cases in radius of 5 nm 

and small scale effect of 2 nm has the greatest value and 

this difference decreases by raising the radius from 5 to 

20 nm. 

• Increase of vdW coefficient leads to increase of 

critical buckling load smoothly then it has no impact on 

critical buckling load after a certain value. After this 

value slope of the curves approximates to zero 

• By increasing the Winkler elastic foundation, 

buckling load rises for both local and nonlocal models. 

This trend is more significant in local state compared to 

nonlocal one  

• Small scale parameter does not have any effect 

on critical buckling load of cases without elastic medium 

in simply supported boundary condition.  

• Increase in Kp leads to increase in critical 

buckling load. This trend is more considerable in the 

lower values of shear module. 

• With increase of Kp there is no difference 

between the results obtained from local and nonlocal 

models with small scale parameter of 0.5 nanometer in 

simply supported boundary condition. 
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