Velocity Control of Nonlinear Unmanned Rotorcraft using Polytopic Modelling and State Feedback Control
Subject Areas : roboticsReza Tarighi 1 , Amir Hooshang Mazinan 2 , Mohammad Hosein Kazemi 3
1 - Department of Control Engineering, Faculty of Electrical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
2 - Department of Control Engineering, Faculty of Electrical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
3 - Faculty of Electrical Engineering, Shahed University, Tehran, Iran
Keywords:
Abstract :
[1] Avila Vilchis, J. C., Brogliato, B., Dzul, A., and Lozano, R., Nonlinear Modelling And Control of Helicopters, Automatica, Vol. 39, No. 9, 2003, pp. 1583–1596, DOI :10.1016/S0005-1098(03)00168-7.
[2] Gadewadikar, J., Lewis, F. L., Subbarao, K., and. Chen, B. M., Structured H∞ Command and Control-Loop Design for Unmanned Helicopters, J. Guid. Control. Dyn., Vol. 31, No. 4, 2008, pp. 1093–1102, DOI: 10.2514/1.31377.
[3] Tijani, I. B., Akmeliawati, R., Legowo, A., Budiyono, A., and Muthalif, A. G. A., H∞ Robust Controller for Autonomous Helicopter Hovering Control, Aircr. Eng. Aerosp. Technol., Vol. 83, No. 6, 2011, pp. 363–374, DOI: 10.1108/00022661111173243.
[4] Hongwei, Z., Xuehua, Z., and Bao, Z., System Dynamics Approach to Urban Water Demand Forecasting, Trans. Tianjin Univ., Vol. 15, No. 1, 2009, pp. 70–74, DOI: 10.1007/s12209-009-0014-5.
[5] Khizer, A. N., Yaping, D., Amjad Ali, S., and Xiangyang, X., Stable Hovering Flight for a Small Unmanned Helicopter Using Fuzzy Control, Math. Probl. Eng., Vol. 2014, Article ID 208253, 17 page, 2014, .DOI: 10.1155/2014/208253.
[6] Li, R., Chen, M., Wu, Q., and Liu, J., Robust Adaptive Tracking Control for Unmanned Helicopter with Constraints, Int. J. Adv. Robot. Syst., Vol. 14, No. 3, 2017, pp. 1–12,DOI: 10.1177/1729881417712621.
[7] Razzaghian, A., Robust Nonlinear Control Based on Disturbance Observer for a Small-Scale Unmanned Helicopter, J. Nonlinear Anal. Appl., Vol. 2017, No. 2, 2017, pp. 122–131, DOI: 10.5899/2017/jnaa-00390.
[8] Ma, R., Ding, L., and Wu. H., Dynamic Decoupling Control Optimization for a Small-Scale Unmanned Helicopter, J. Robot., Vol. 2018, Article ID 9897684, 12 pages, 2018, DOI: 10.1155/2018/9897684.
[9] Horn, J. F., Non-linear Dynamic Inversion Control Design for Rotorcraft, Aerospace, Vol. 6, No. 3, 2019, pages 38, DOI: 10.3390/aerospace6030038.
[10] Kun, D. W., Hwang, I., Linear Matrix Inequality-Based Nonlinear Adaptive Robust Control of Quadrotor, J. Guid. Control. Dyn., Vol. 39, No. 5, 2016, pp. 996–1008,DOI: 10.2514/1.G001439.
[11] Patterson, B. W., A Linear Parameter Varying Control Methodology for Reduction of Helicopter Higher Harmonic, Master of Science in Aeronautics and Astronautics, Massachusetts Institute of Technology, 2016.
[12] Mohammed, R. H., Comparative Study and Robustness Analysis of Quadrotor Control in Presence of Wind Disturbances, Vol. 12, No. 2, 2019, pp. 27–37.
[13] Lin, Z., Gain Scheduling of Aircraft Pitch Attitude and Control of Discrete, Affine, Linear Parametrically Varying Systems, Ph.D. Dissertation, Iowa State University, 2002.
[14] Jafar, A., Bhatti, A. I., Ahmad, S. M., and Ahmed, N. Robust Gain-Scheduled Linear Parameter-Varying Control Algorithm for a Lab Helicopter: A Linear Matrix Inequality–Based Approach, Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng., Vol. 232, No. 5, 2018, pp. 558–571,DOI: 10.1177/0959651818759861.
[15] Da Ponte Caun, R., Assunção, E., Minhoto Teixeira, M. C., and Da Ponte Caun, A., LQR-LMI Control Applied to Convex-Bounded Domains, Cogent Eng., Vol. 5, No. 1, 2018, pp. 1–27,DOI: 10.1080/23311916.2018.1457206.
[16] Kasnakoǧlu, C., Investigation of Multi-Input Multi-Output Robust Control Methods to Handle Parametric Uncertainties in Autopilot Design, PLoS One, Vol. 11, No, 2016, pp. 1–36,DOI: 10.1371/journal.pone.0165017.
[17] Raptis, I. A., Linear and Nonlinear Control of Unmanned Rotorcraft, Ph.D. Dissertation, University of South Florida, 2010.
[18] Ren, B., Ge, S. S., Chen, C. C., Fua, H., and Lee, T. H., Modeling, Control and Coordination of Helicopter Systems, 1rd ed, Springer New York Dordrecht Heidelberg London, ISBN: 9781461415633, 2012.
[19] Cai, G., Chen, B. M., and Lee, T. H., Unmanned Rotorcraft Systems,Springer London Dordrecht Heidelberg New York British, ISBN 978-0-85729-635-1, 2011.
[20] Zhou, B., Lu, X., Tang, S., and Zheng, Z., Nonlinear System Identification and Trajectory Tracking Control for a Flybarless Unmanned Helicopter: Theory and Experiment, Nonlinear Dyn., Vol. 96, No, 5, 2019, DOI: 10.1007/s11071-019-04923-9.
[21] Liu, C., Advanced Control for Miniature Helicopters: Modelling, Design and Fight Test, Ph.D. Dissertation, Department of Aeronautical and Automotive Engineering Loughborough University, 2011.
[22] Johnson, W., Rotorcraft Aeromechanics, 1rd ed, Cambridge University Press, ISBN: 978-1107606913, 2006.
[23] Mettler, B., Identification Modeling and Characteristics of Miniature Rotorcraft, Springer US, 2003, ISBN 978-1-4757-3785-1 .
[24] Shamma, J. S., Analysis and Design of Gain Scheduled Control Systems, Ph.D. Dissertation, Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1988.
[25] Petres, Z., Polytopic Decomposition of Linear Parameter-Varying Models by Tensor-Product Model Transformation, Ph.D. Dissertation, Budapest University of Technology, 2006.
[26] Souley, A. H., Boutat-Baddas, L., Becis-Aubry, Y., and Darouach. M., H-Infinity Control of a Scara Robot Using Polytopic LPV Approach,14th Mediterranean Conference on Controland Automation, DOI:10.1109/MED.2006.328836:, 2006.
[27] Kazemi, M. H., Abolhasani, J., Uncertain LPV Modeling of Power Systems using PCA-Based Parameter Set Mapping for Robust PSS Designing, TABRIZ J. Electr. Eng., Vol. 48, No. 2, pp. 455–466, 2018.
[28] Duan, G. R., Yu, H. H., LMIs in Control Systems: Analysis, Design and Applications, 1rd ed, CRC press, ISBN: 978-1466582996, 2012.