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Abstract: Performance and improvement of flight efficiency at various velocities for 
flight systems, in particular, rotorcrafts, with specific complexities in motion and its 
nonlinear equations are always of particular interest to researchers in the aerial and 
control domains. In this research, a new control algorithm is addressed based on the 
complete nonlinear Unmanned Rotorcraft (UR) model and its four main inputs. 
Exploiting state feedback and Polytopic Linear Parameter Varying (PLPV) modeling 
and using Linear Matrix Inequality (LMI), the velocity control problem is investigated. 
The trim points of the system are produced under different velocity control conditions. 
State feedback control gain matrix which plays a main role in producing the ultimate 
control signal, is computed by solving a set of LMIs under various conditions. Finally, 
instead of using a Nonlinear model, a Polytopic model is used for controller synthesis. 
With this goal, different scenarios for the proposed flight velocity control (in different 
dynamic ranges, minimum velocity to maximum velocity) are implemented. The 
simulation results demonstrate a very good performance of the proposed controller in 
the basis of PLPV modelling. It can be concluded that the proposed  manner is useful 
to overcome the disruptions imposed on the flight system due to the changes in the 
equilibrium points and the uncertainties of the parameters and/or possible errors due to 
the unwanted possibilities in the system. 
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1 INTRODUCTION 

It has been years since the first attempts to fly and to 

build flight systems. During these years, attempts to 

construct various types of vehicles have developed with 

different flying features. These efforts led to the made of 

a flying device with special advantages in flying the 

helicopter or rotorcrafts  name. In addition to the flight 

features of the aircraft, the characteristics include the 

ability to the rearward flight, hovering flight and 

sideward flight and vertical flight. The different usage of 

rotorcrafts relies on these capabilities, relief, and 

medical services, social and welfare services, aerial 

imaging, geology, and so on. The rotorcrafts are one of 

the most nonlinear and complex systems that are 

inherently unstable due to the flight performance system. 

This is mainly due to the fact that the rotor and fuselage 

are interconnected. the performance of operational 

rotorcrafts (actual)  and unmanned rotorcrafts are 

approximately analogous in structure. However, 

because of the inexistence of accurate information on 

such helicopters(actual), the article focuses on 

unmanned rotorcrafts. Achieving the desired velocities 

by considering all four inputs simultaneously as well as 

involvement of the tail and the main rotor will improve 

the stability performance of the flight system even in the 

state of the momentary shock to the user or the flight 

system controller, (for the reasons mentioned above, 

nonlinear and complex systems and significant high 

impact of the main rotor and the tail rotor on each other 

and difficult conditions to consider at the same time all 

four of the main entrance to the helicopter).  
This paper attempts to introduce different scenarios to 

examine different modes of speed. That is, we analyze 

them using unique capabilities LPVs, as well as solvers 

of Linear Matrix Inequalities (LMI). Effective and good 

research has been done on unmanned helicopters. But 

there has been less focus on velocity and movement 

maneuvers based on the authors’ knowledge so far. 

Furthermore, if the research has been done, it has been 

more focused on the state (Hover or its surroundings). 
The research about the application LPVs, of the 

helicopter and UAV can be seen in[10-16]. This section 

introduces a summary of the study on research topics 

conducted in different scopes of rotorcrafts, especially 

unmanned rotorcrafts. In [1], controlling the nonlinear 

autonomous rotorcraft model is investigated that offers 

how to create a nonlinear model and a nonlinear control 

strategy for a rotorcraft. The proposed nonlinear model 

has some very specific characteristics that make it an 

interesting challenge in the investigation, even in the 

case of three degrees of freedom precisely, aerodynamic 

forces lead to signals and matrices that are notably 

considered in the contents of mechanical control 

systems. In [2], H∞ control design has been investigated 

which is structured for steering and loop control of the 

unmanned rotorcraft that has a controller based design 

for the robust output feedback and, the reason for this 

choice is the simplicity of the proposed method in which 

the control gains are obtained from solving just two 

matrix coupling (pair) equations. Then, an efficient 

algorithm is presented for solving these two matrix 

equations in which we do not need sustained gain as an 

initial condition.  
In [3], H∞ robust control has been analyzed for an 

unmanned rotorcraft in the presence of uncertainties as 

well as applying wind disturbance as uncertainty in this 

flight model in static flight mode. In reference [4] as a 

review, an adaptive robust control design is investigated 

for unmanned rotorcraft in aerial vehicles based on a 

sliding mode approach in which the purpose of the study 

is to enable a rotorcraft to detect a position and the 

position different from the predetermined time. The 

suggested controller employes the feedback 

linearization process to control synthesis, it controls the 

adaptive sliding mode to compensate for the parametric 

uncertainty and external impairments. In [5], flying in a 

stable state is presented for an unmanned rotorcraft using 

fuzzy control for sustained flight in a small unmanned 

rotorcraft in turbulent air environments. The design of 

the controller includes two loops, an inner ring controller 

is presented for the angle and height, and an outer ring 

controller is produced, which is presented for the 

position control of the rotorcraft. In reference [6], 

tracking control problem is studied by using the adaptive 

robust control for an autonomous rotorcraft. In this 

study, a small unmanned rotorcraft system is exposed to 

input saturation and output constraints. The radial base 

function of the neural networks is used to satisfy the 

uncertainty of the system.  

The rotorcraft system is provided to show the 

effectiveness of the tracking development plan using the 

disturbance. Reference [7] investigates nonlinear robust 

control which is based on disorder observations for a 

small-scale unmanned rotorcraft. The control goal is to 

let the rotorcraft follow a predetermined path. Proposing 

nonlinear robust control is based on the sliding mode 

control technique with the backstepping mode. The 

control function is different based on a time disturbance 

observer. The nonlinear model of the rotorcraft has been 

modified as a nonlinear dependent system to obtain a 

control rule. The mathematical proof using the 

Lyapunov function and the stability theorems show that 

the closed-loop system is completely stable in the 

presence of this controller . In [8], dynamic control 

optimization was sought for unmanned small scale 

rotorcraft, compared to several repetitious various 

search algorithms. Optimized parameters of chosen 

parameters are an artificial native cloning algorithm and 

an LQG controller  is designed for a fair comparison of 

controller performance. 
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In [9] reference, the dynamic nonlinear inverse control 

design of an unmanned rotorcraft has been studied. The 

dynamic inverse design offers an ideal solution for 

flying rotorcraft control, which effectively separates the 

model and in particular controls the nonlinear model. 

However, regarding rotorcraft restrictions, this method 

requires complete state feedback. The control design 

study is done using dynamic reversal with reduced 

models. 

Reviewing LPV control, we can point to the reference 

[10], which refers to the linear matrix inequalities based 

on nonlinear adaptive robust control for a small 

autonomous quadcopter. In this study, the design of the 

controller is used for various applications of a 

quadcopter, including precise tracking, independent 

routing navigation in the presence of disturbances, and 

delivery of the package without loss of performance. 

The design is based on the determination of the inner and 

the outer ring. In the study [11], a method for controlling 

the LPV model for reducing harmonic vibration on the 

top of the rotorcraft has been studied. In this research, 

the controller has been designed to reduce the stable 

vibration reduction throughout the rotorcraft effective 

flight path despite variations in vibrational and dynamic 

flight conditions. In [12], a comparative study is 

peresented and robustness analysis of quadrotor control 

in the presence of wind disturbances is investigated. In 

the study [13], the setting of the gain of the screw state 

of the linear variable parameter for a rotorcraft is 

presented which, in this reference, it has been 

investigated first as a schematic design of the screw state 

setting and finally, as the control of a linear class of 

(LPV(.  

Reference [14] can be referred to as an article entitled 

the robust linear variable parameter control algorithm by 

adjusting the gain for the laboratory quad-copter using a 

linear matrix which is based on the inequality (LMI) 

method. In this Reference, the design is proposed by a 

robust control technique of the LPV with an induced L2 

norm efficiency. Different techniques of LPV control 

have been reported in this paper for design control with 

adjusting the gain on a nonlinear device, such as mode 

feedback with the limits of the polarization area, LPV 

control, the mode feedback, and LPV control. One 

disadvantage is that steady control over non-resistance 

parameters and disturbances are not as strong as most 

airborne and non-resistance industries with external 

disturbances.  

Therefore, they are not suitable for every model. In [15], 

LQR control uses the LMI technique for an unmanned 

rotorcraft with the selection of the band domain that is 

based on the convexity. In [16], robust control is used 

for an unmanned rotorcraft with several inputs and 

outputs on the automatic flight and it is only studied in 

the investigation of a trend in the direction of the 

longitudinal direction, however, in this design, the 

examined aim of speed control is considered 

automatically. This process, at first, includes the 

introduction of rotorcraft modeling based on its dynamic 

and kinematic structure and then, based on the model, it 

is extracted according to the different rotorcraft speeds. 

In the next step, we introduce the polytypic LPV model 

which is based on the extraction of the flight system. In 

the next level, the LPV model is performed, based on the 

extracted model of the nonlinear and design controller 

that is based on solving the LMI equations and then, in 

the simulation section, introducing different scenarios in 

different speeds have been investigated for their stability 

and finally, conclusion and references are presented. 

Figure 1 presents the coordinates of the fuselage and the 

hub of a rotorcraft. 

 

 
Fig. 1    Introducing the fuselage and the hub. 

2 NONLINEAR DYNAMIC MODEL    

All manuscripts are to be submitted online According to 

Newton's second law, the product of multiplication of 

mass in the acceleration is equal to force; it means that : 
 

  F M a=                                                                   (1) 

 

According to Newton's second law, we will have [17]:  
 

        
dv

f m I
dt

=                                                         (2) 

v
dv dv

I B
dt dt

= +                                                  (3) 
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The difference between “Eq. (2) and (3)ˮ is that when 

they are implemented on a free space vector in space, the 

obtained result is generally different. If we recall 

equations in (1), by considering the rules governing the 

second rule and introducing :         TB x y zF F F F  
and 

   :       TBM L M N , by using the mentioned kinematic  

equations, we will have “Eq. (4) and (5)ˮ which consist 

of all external forces inserted, respectively, except for 

the gravity and moment forces around the axis of the roll 

and the screw or around the axes X, Y, Z. Using the 

kinematic equations  that were mentioned before, we 

express “Eq. (4) and (5)ˮ. 
 

( )         mv m v F+  =                                                       (4) 
 

( ) ̇          I I M  +  =                                                     (5) 
 

By introducing ( ) ( )/V , , ;ω , ,
T TB

B B Nu v p q r= = , they are 

angular and linear velocities relative to the structure of 

coordinate axes, respectively. In other words, it can be 

written as:  

1
x

y

z

u p u gsin F

v q v gsin cos m F

w r w gcos cos F







−

  −       
         

= −  +  +         
                    

  (6) 

 

Where their descriptive unit m/s stands for VB
 and rad/s 

stands for ( / )

B

B N  and  the symbole × is a cross-product 

[18]. If we define BF  in the form of “Eq. (7)ˮ [19]: 

 

x mr fus

y mr fus tr vf

z mr fus hf

F X X

F Y Y Y Y

F Z Z Z

= +

= + + +

= + +

                                        (7) 

 
B 1

B B/N B B BGV ω    V m F F−= −  + +                               (8) 

 

If we express the moment equations in the form of the 

“Eq. (9)ˮ with the explanation that L, M, N are the 

Moment of the roll and screw, or on the coordinate axes 

of the fuselage: 

 

 

( )

( )

1

1

1

2 2
2

2 2
2

2 2 2

p qr I I I I qpI I I I LI NI

I I I

r qrI I I I qp I I I I LI NI

I I I

q pr I I I r p M
I

yy zz zz xz xz zz xx yy zz xz
yy xx xz

xz yy zz xx xz xx xx yy xz xx
yy xx xz

zz xx xz
yy

   
= − − + + − + +  

   −

   
= − − + + − + +  

   −

    
= − + − +    

     

                                                                           (9) 

 

According to this, moment relations can be presented in 

the form of: 

 

mr vf tr

hf mr

mr vf tr

L L L L

M M M

N N N N

= + +

= +

= + +

                                              (10) 

 

Which for this equation, the symbols  , ,mr mr mrL N M  

are defined as the moment around the screw to the 

moment produced in the main rotor,
hfM is defined as the 

aerodynamic moment produced by the horizontal wing, 

, ,vf vfL N as the aerodynamic moment produced by the 

vertical wings and ,tr trL N as the aerodynamic moment 

produced by the tail rotor, respectively. The indecies 

,( , ,( ) ( ) ,( )) ( )mr tr fus vf hf      represent the symbol of the 

main rotor and tail and fuselage rotor and the vertical and 

horizontal fins, respectively [19]. The values of the 

variables used in the paper are presented  in “Table 1ˮ 

[19] from the center of gravity (CG). In summary, the 

equation (9) can be presented as: 

 

 

 

                         (11) 

 

 

Where I is the inertial matrix, which is shown as: 

 

xx xy xz

yx yy yz

zx zy zz

I I I

I I I I

I I I

 
 

=  
  
 

                                              (12) 

 

2
xx zz zzI I I = −                                                   (12-a) 

1 1 1 1

0

0 0

0

zz xz

yy

xz xx

I I

I I

I I

− − − −

 
 

=   
 
 

                        (12-b) 

1 1

p p u L

q I q I v I M

r r N

− −

         
         

= −  +         
         

         
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Where, 
xy yx zy yzI I I I= = = is zero, because inertial 

matrices have no coupling effect on ,xy yzI I  and in the 

total flight means, and the movement is symmetric in the 

x-z direction [18], it means that: 
 

0

0 0

0

xx xz

yy

xz zz

I I

I I

I I

 −
 

=  
 
− 

                                       (12-

c) 

 

Or, in general, we can express it in the form of: 

 

( )( )1
/ / /ω ωB B B

B N B B N B NI M I −= −                       (13) 

 
Table 1 Variable values in simulation 

Unit Value 
Paramet

er 
Unit Value 

Paramet

er 

rad/s 193.73 Ω mr kg·m2 0.251 I xx 

rad/s 900.85 Ω tr kg·m2 0.548 I yy 

m 0.705 R mr kg·m2 0.787 I zz 

m 0.128 R tr N 
96.76

6 
T mr 

kg 9.750 m N 4.188 T tr 

m/rad 
0.1206

4 
ktr m 0.337 H mr 

m/rad 0.71052 kmr m/s 4.190 Vimr 

N. m 114.05 Kβ m/s 5.62 Vitr 

m 2 1.5614 Amr kg·m3 1.29 ρ 

m 2 0.0514 Atr m 0.337 H mr 

m 0.184 H vf m 0.172 H tr 

(rad)-1 2.85 Clavf m 0.172 H tr 

rad 0.210 Alon m 2 0.103 Sfx 

rad 0.200 Blat m 2 0.900 Sfy 

rad 0.570 Dlat m 2 0.084 Sfz 

rad 0.560 Clon m 2 0.011 Shf 

n. a 1 Ksb m 2 0.007 Svf 

sec 0.0462 τmr sec 0.2528 τsb 

rad 0.143 θped0 n. a 1 kped 

rad 0.0750 θcol0 n. a 0.165 kcol 

1/s 10.704 Bas 1/s 9.720 Abs 
N

kg
 9.781 g (rad)-1 2.85 Clahf 

 

It should be noted that, in introducing the kinematics 

equations, the derivatives of the Euler angles are not 

orthogonal to each other [18]. 

  

sec

 

p qtan sin rtan cos

qcos rsin

qsin sec rcos

 



  

 = +  + 

= − 

=  + 

                        (14) 

Or, in summary, we will have: 

 

1
/ωB

B NS



 −

 
 

= = 
 
 

                                                  (15) 

Where: 
 

1

1

1

0

sin tg cos tg

S cos sin

sin sec cos sec

 

 

−

  
 

=  −  
   

                         (16) 

 

Using the kinematic and dynamical model of a small-

scale unmanned rotorcraft, it can be described by 

Newton-Euler's Law as: 
 

.

    ( )N BN V R VP = =                                                    (17) 
 

Where,         
T

NP x y z= and ( )R   is the matrix of the 

rotation that is resulted from the following rotation 

matrix. 
 

( ) ( ) ( )( )

( )

R R R R

C C S S C C S C S C S S

R C S S S S C C C S S S C

S S S C C

    

           

           

    

 =

− + 
 

 = + − 
 
 

     

                                                                                  (18) 

 

However, in some cases, wind velocity can be neglected, 

but in calculating aerodynamic forces, it can be 

considered which is introduced according to the speed of 

the rotorcraft relative to the movement in the air to the 

fuselage speed   ( )          
T

a a a aV u v w= . We introduce the 

velocity of wind motion as an external perturbation, it is 

introduced with the symbol W, and the vector 

( )          
T

win w w wV u v w= , and consequently, the “Eq. (19)ˮ is 

presented [19]. 

 

, ,a w a w a wu u u v v v w w w= − = − = −                       (19) 

 
The details of the “Eq. (7)ˮ which includes the equations 

of the main rotor components is introduced as: 
 

     

       

       

mr mr s

mr mr s

mr mr s s

X T sin a

Y T sin b

Z T cos a cosb

= −

=

= −

                                           (20) 

 

Where, 
mrT  is the trust of the main rotor. The moment  

generated for the main rotor, used in “Eq. (10)ˮ, is 

expressed as [19]: 
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( )( )

( )( )
1

       

        

   .

mr s mr mr

mr s mr mr

mr mr

L sin b K T H

M sin a K T H

N P





−

= +

= +

= − 

                             (21) 

 

Where, 
mrP  is the amount of total consumed power, 

which includes following four forces: 

 

     mr pr i pa cP P P P P= + + +                                            (22) 

 

It contains the main rotor power, the main rotor 

induction power, the perturbation power, the 

incremental power, respectively, their calculations can 

be followed in [19]. The value of K  is also considered 

to be the effective constant of the main rotor and 
mrH  is 

the main distance of hub rotor. 

 

( )2 2 2 2
00.125 ( ) 4.6 )(pr mr mr D mr mr mr mr a aP R C b c R u v=   + +  

i mr imrP T v=  

 

( )pa fus a fus a fus a imrP X u Y v Z w v= + + −  

 : 0c a aP gw w= − m                                            (22-a) 

 

2.1. Main Rotor and Moment Force 

The exact value of mrT  can be determined as:    

 

( )( )

( ) ( ) ( )

2

2 22 2 2

0.25

/ 2 / 2ˆ . . / 2

0.67

ˆ

mr mr mr mr bldmr imr

imr mr mr

bldmr rmr mr mr col

T R k v

v v T A v

R

 



  

=  −

= + −

= + 

     (23) 

 
Where, 

mr  is the main rotor rotation velocity,
mrA  is 

the main rotor disk area,
bldmr  is the pure vertical 

velocity relative to the main rotor blade, imrv  is the 

induction velocity generated by the main rotor and 
2v̂  

is an average variable in the calculations of the main 

rotor thrust, in which the method of determining the 

relationship is introduced in [19]. The variable rmr  is 

the net vertical velocity through the main rotor disk, 
mrR  

is the radius of the main rotor blade and 
mrk  is the main 

rotor constant, which is derived from the result of 

multiplying the lift curve slope by the main rotor blade 

and the length of the tendon of the main rotor blade and 

the number of main rotor blades; and 
col  is the 

collective pitch angle of the main rotor blade.  

2.2. Tail and Moment Rotor Force 

A tail rotor is usually used to control and direct the 

rotorcraft and  to prevent the Moment from the main 

rotor. Its calculation is completely identical to the 

original rotor and, since the tail rotor blade size is very 

small, its flapping effect is negligible.  trk is introduced 

as the constant of the tail rotor which results from the 

multiplication of the slope of the lift curve by the blade 

of the tail rotor and the length of the tendon of the tail 

rotor blade and the number of tail rotor blades [19]. 

  

( )( )

( ) ( ) ( )

2

0

2 22 2 2

3

0.25

/ 2 / 2. . / 2

0.

ˆ ˆ

67

tr tr tr tr bldtr itr

itr tr tr

bldtr rtr tr tr ped

ped ped ped

T R k v

v v T A v

R

k u

 



  

 

=  −

= + −

= + 

= +

          (24) 

 

Where, 0 3, ,pp d edek u  are ratio of tail rotor 

blade, pedal angle to rudder servo deflection when the 

offset value of 3u  is zero, and rudder servo actuator 

deflection rb, espectively [19]. 

2.3. Fuselage Forces 

The fuselage,  during the flight, moves along the three 

directions of the X, Y, Z of fuselage frame. In “Fig. 2”, 

the calculation algorithm is presented in which the effect 

of the drag forces in the X, Y and Z directions is 

presented by , ,fx fy fzs s s  symbols, respectively. 

 

 

Fig. 2 Algorithm of fuselage forces. 
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The calculation algorithm for the Moment and vertical 

wing forces in the Y direction with the
vfy  symbol is 

shown in “Fig. 3”. We introduce
i as the angle of attack, 

and the local lateral vertical velocity in the air with the 

symbol vfv  and the slope of the lift curve by lavfc  [19]. 

 

 
Fig. 3 Algorithm of forces and Vertical Moment of the 

tail. 

 

To determine the moment and forces of the wing 

horizontal force shown as 𝑧ℎ𝑓 and how it is calculated, 

see “Fig. 4”. The slope of the horizontal lift curve is 

introduced as 𝑐𝑙𝑎ℎ𝑓 and the area of the horizontal area is 

represented by the  𝑠ℎ𝑓 [19-20]. 

 

 
Fig. 4 Algorithm of forces and horizontal moment of the 

tail. 

2.4. The Main Rotor Flapping Dynamics 

An overview of the equations can be found in 

references[21-23]. The general form is:  
 

( )

( )

2

4

1

1

+
 = + − + + + + +

+
 = + − + + + + +

lon sb lon mr bs
s s s mr sb sb

mr sb mr sb mr sb

lat sb lat mr as
s s s mr sb sb

mr sb mr sb mr sb

A k C τ A
a u b a τ k τ q

τ τ τ τ τ τ

B k D τ B
b u a b τ k τ p

τ τ τ τ τ τ

     

                                                                                                       (25) 

3 EXTRACTING THE POLYTOPIC MODEL    

Rotorcrafts are very nonlinear systems, which have a 

very complex and significant dynamics. However, 

researchers, in order to analyze, typically produce 

linearized models of rotorcraft systems. In particular, a 

linear model approximates a special nonlinear rotorcraft 

system working around the operating point and signals. 

The general form of the nonlinear equation is presented 

as the following equation . 

 

( )  , x f x u=                                                                (26) 

 
After linearization of the system we will have: 

 

 i ix ux A B= +                                                        (27) 

 

Where: 

 

( ) ( )

0 0
0 0

1 2 3 4

, ,
  ;

( , , , , , , , , , )

( , , , )

( , , )

==
= =

 
= =

 

=

=

=

i i
x xx x i i

u u i u u i

T
s s

T

T

f x u g x u
A B

x u

x u w q a v p r b

u u u u u

y u w q

            (28) 

 

And 0 0,= =i ix x u u  is any desired operating point, and 

it is considered that the inputs are normalized to interval 

[1, -1]. The general case for matrices iA  and iB  are 

presented as:  
 

u w q as v p r bs

u w q as v p r bs

u w q as v p r bs

u w q as v p r bs

u w q as v p r bs

i

u w q as v p r bs

u w q as v p r bs

u w q as v p r bs

u w q as v p r b

X X X X X X X X X X

Z Z Z Z Z Z Z Z Z Z
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A A A A A A A A A A
A

Y Y Y Y Y Y Y Y Y Y

L L L L L L L L L L

N N N N N N N N N N

 

 

 

 

 

 

 

 

 

         

         

=

s

u w q as v p r bsB B B B B B B B B B 

 
 
 
 
 
 
 
 
 
 
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1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

u u u u

u u u u

u u u u

u u u u

u u u u

i

u u u u

u u u u

u u u u

u u u u

u u u u

X X X X

Z Z Z Z

M M M M

A A A A

Y Y Y Y

L L L L

N N N N

B B B B

B

   

   

 
 
 
 
 
 
 

=  
 
 
 
 
 
 
  

 

  (29) 

 

More detailed explanations of the “Eq. (29)ˮ are 

explained in reference  [18]. The matrices produced in 

the equilibrium point, range from static to flight mode 

with the velocity up to 12 m/s in appropriate intervals 

and with 490 data set generated by the matrix
10 10A 

 and 

490 data set generated by the matrix 
4 10B 

. Calculation 

of system matrices by differentiation of “Eq. (28)ˮ 

results in the following general form.   

 

1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,10

2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,9 2,10

3,1 3,2 3,3 3,5 3,6 3,7 3,8 3,10

4,3 4,8 4,9

5,3 5,5 5,10

6,1 6,2 6,3 6,4 6,5 6,6 6,7 6,8 6,9 6,10

7,1 7

0

0

0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0
iA

        

        

       

  

  

         

 

=
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 
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 
 
 
 
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 
 
 
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 
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 
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=  
 
 
 
 
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 
  

 

(30) 

Figure 5 shows the dynamic model in the rotorcraft 

structure. In “Table 3ˮ, forces, inputs, and outputs are 

introduced [19]. 

 

 
Fig. 5 Main dynamic structure of the rotorcraft. 

 

Traceability and robust efficiency, in control of MIMO 

airborne vehicles, are the most important requirements 

for designing a stabilization control law that guarantees 

efficiency during real-time operations. Over the past few 

decades, LPV control techniques have been successful 

in controlling nonlinear equipment. The main 

importance of this technique is that using the gain-

scheduled theory, the linear controller can be formulated 

for nonlinear systems. The main problem with LPV 

systems is that due to the complexity of controlling the 

large dimensions of variable factors, the controller's 

formulation is very difficult by the analysis method. 

However, after the development of the Linear Matrix 

Inequalities (LMIs), LPV problem solving with semi-

described programming has become much easier [14]. In 

general, due to the high performance of linear systems 

in the control topics and the interest of the investigators 

in the field of control, they can bring in systems with 

complex nonlinear properties in linear form. The 

standard form of the LMI matrix is presented as: 

( ) 0
1

0
n

i i
i

F x F x F
=

= +                                            (31) 

 

Where, 𝑥 =  [𝑥1,· · · , 𝑥𝑛]𝑇are the polynomial vector 

coefficients and they are also introduced as a decision 

vector which is unclear. The LPV system was introduced 

by Shamma in 1998 . LPV systems are linear dynamical 

systems that in describing the mathematical model, they 

are depended on the parameters that vary over time. 

These parameters are generally limited and are 

considered to be within the set of 𝛥𝜇 and are often 
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assumed as a compact and convex polygon (for example, 

a box) [24]. In general, an LPV system can be 

represented as: 

 

( ( )) ( ) ( ( )) ( )

( ( )) ( ) ( ( )) ( )

x A t x t B t u t

y C t x t D t u t

= +

= +

 

 
                                  (32) 

 

As it can be seen, “Eq. (32)ˮ is a dynamic model of linear 

mode space, but their particular difference is in model 

matrices, which are non-deterministic and they are 

dependent on free parameters in the system with the 

condition that 𝑢(𝑡) ∈ 𝑅 𝑘 is as the input and ( )  ly t R  

as the output and ( )  mx t R as the state vector [25].  

The linearized mode (27) with the choice of vector

,ˆ( ) [ ( ) ( )  ]ˆT T Tt x t u t=  as the selected path and definition 

x̂x x= +  and   ûu u= +  , can be described by: 

 

( ( )) ( ) ( ( )) ( )x A t x t B t u t =  +                               (33) 

 

( ) ( )( ( )) ( ( ))
( )  

( ( )) ( ( ))

m k m lA t B t
s R

C t D t

+  + 
=  
 

 


 
             (34) 

4 CONTROL DESIGN  

Lem1: Switching systems are introduced in the 

following series [26]: 
                    

  1
: 0 0,1 : 1

N N

ss ii
S R 

=
=  → =                  (36) 

 

According to lem1: 

 

1 2

1

( ) { ( ), ( ),..., ( )}

( ) ( )

N

N

i i
i

S CONVEX S S S

S S
=

=

=

   

 β
             (37) 

Where, 𝑁 is the number of polytypic vertices, and it is 

considered that
N

i 1

1
=

= iβ and
i 0β  by saying that 

( )  ,i i iS A B= , is calculated in our ultimate goal and 

determination of the matrix K as a constant state 

feedback control gain matrix. It means:  

 

u K x = −                                                                                                               (38) 
 

In the following, using the control law (38) and applying 

it to “Eq.(33)ˮ, which is actually equal to applying the 

control rule   ûu u= +   to the nonlinear plant, an 

appropriate estimate of the matrix ( ),i iA B can be 

introduced [27] as:  

  ;ˆ ˆ
i i i i i iA A A B B B = + = +                                 (39) 

Where, {1,2,3,..., }i N  and ˆˆ , i iB A  are the estimated 

matrices for the nominal model of the vertices of the 

ploytopic model. Now we have: 
 

( ) ( )
1

[ ( ( )) ( ( )) ] ( )
N

i i
i

x A t B t K x t A B K x t
=

 = −   −  iβ         (40) 

 

It can be reformulated:  

 

1 1

( ) ( ) ( )
N N

i i cli
i i

A B K x t Ax x t
= =

= −  =  i iβ β               (41) 

 

Using “Eq. (39) in ( 41)ˮ, we obtaine [28]: 

                       

1

ˆ
N

cli
i

A x xx
=

 =  +  iβ                                          (42) 

 

Where, ˆ
cliA  is the estimated closed-loop system matrix 

for the nominal closed-loop system matrix 
cliA . The 

following lemma gives the asymptotically stability 

condition.  

Lem2 [28]:  

If there are the following positive definite matrices:  
 

,  ; , 0T TX X Y Y X Y= =                                        (43) 

 

Such that the following LMIs are satisfied for vertices 

models, then polytopic LPV model is asymptotically 

stable under the state feedback control with the control 

matrix gaine 1K MX −= .  

 

ˆ ˆˆ ˆT T T T
i i i iM B B M A X XA Y+ − −                            (44) 

5 SIMULATION  

Velocity control is examined in this section.. The speed 

ranges from near to zero meters (near hover) per second 

to twelve meters per second are generated at appropriate 

distances. The block diagram depicted in “Fig. 6” shows 

how to apply the equations and how to use the proposed 

controller in a flight system. In the following, the 

simulation results for speed control are presented in 

several scenarios. In general, the most important and the 

main state for controlling the movement of rotorcraft is 

velocity in the longitudinal direction. With a full 

application of fuselage force equations, the main rotors 

and tail, the flapping equations, the vertical fin and tail, 

and their great impact on each other causes initial 

differences in the outputs and stability of the velocity. 

This part is one of our most important research features 

because in all cases investigated based on research 

knowledge, in all cases, some parts of the interrupted 
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forces are eliminated or the form of separation of 

internal and external layers of research is focused which 

makes it partially simple. That is, by focusing on the 

inner or outer layer, some of the forces influencing each 

other are practically eliminated and the percentage of 

those resulting influential forces is effectively 

eliminated. The greatest impact of interference on lateral 

speed control is understandable due to its existential 

type. However, the goal we set for ourselves was the 

ability to control the synchronous velocity of the speeds 

along with the longitudinal, altitudinal, lateral 

directions, which the problems in this domain were a 

major challenge in controlling the velocity of the 

rotorcraft flight system. [19], [23], describe the flight 

areas in different classes. According to “Eq. (45) and 

Table 2ˮ, we introduce the velocity regions generated 

from the Near-Hover (almost stationary) to the 

calculated maximum velocity, which is 12 m/s . 
According to “Table 2ˮ, we present the simulation 

scenarios as shown in “Fig. 7ˮ. 
 

Table 2 The introduction of speed areas 

State areas Speed araes 

A Near Hover: (N.H) 0 3u    

B Low Speed: (L.S) 3 7u    

C High Speed: (H.S) 7 u   

 

 

 
Fig. 6 The main structure of the LPV controller. 

 

 
Fig. 7 Introducing simulation scenario. 

 
In the first scenario, the aim is to control the incremental 

velocities and in the second scenario, the goal of the 

reducing velocity is examined. 

 

5.1. First Scenario: Incremental Modes  

- The first goal: in this section, the increasing speed from 

-A to B is examined  

- The second goal: the incremental velocity from the 

minimum velocity of A to the maximum velocity of B 

would be examined . 

- The third goal: the incremental velocity from the 

minimum velocity of B to the minimum velocity of C 

would be examined . 

- The fourth goal: In this case, the sudden increase is 

examined and analyzed, which is the change of state 

from A to C, which is one of the most difficult modes of 

the velocity control . 

However, in reference [19], the incremental velocity was 

analyzed by analyzing experimental results and 

comparing them with simulation results, but it did not 

study the method of the speed stability control , and also 

the simulation results were introduced with a relatively 

high error rate and there is no mention of speed control 

in decrement mode. In the first goal, we examine the 

minimum velocity of the near-hover state, namely mode 

A, to the minimum velocity of the mode B with the 

introduction of Stability Speed Control (S.S.C) and 

Speed Stability Error (S.S.E) the description of the 

figures. 

 

5.1.1. In the first scenario of the first goal 

Figure 8 controls the longitudinal, lateral, and altitudinal 

velocities and “Fig. 9ˮ presents the speed stability error. 

 
𝑴𝒊𝒏 𝒔𝒑𝒆𝒆𝒅 𝒖, 𝒗, 𝒘(𝑵. 𝑯) = 𝟎. 𝟏 , 𝟎 , 𝟎 𝒎/𝒔 

𝑴𝒊𝒏 𝒔𝒑𝒆𝒆𝒅 𝒖, 𝒗, 𝒘(𝑳. 𝑺) = 𝟑. 𝟏, 𝟎 , 𝟎 𝒎/𝒔 
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Fig. 8 The response of speed: the first goal of the first 

scenario, (U): solid blue line longitudinal, (V): solid red line 

lateral, (W): solid black line altitudinal. 

 

 
Fig. 9 Velocity errors: longitudinal, lateral, altitudinal; 

(U): dashed blue line Longitudinal, (V): dashed red line 

lateral, (W): dashed black line altitudinal, first goal of the 

first scenario. 

 

5.1.2. In the first scenario of the second goal 

The minimum velocity of the mode A to the maximum 

speed of the mode B is considered in this part. In “Fig. 

10ˮ, the output of the stable state is shown, and in “Fig. 

11ˮ, the target error condition is presented. 
 

𝑴𝒊𝒏 𝒔𝒑𝒆𝒆𝒅 𝒖, 𝒗, 𝒘(𝑵. 𝑯) = 𝟎. 𝟏 , 𝟎 , 𝟎 𝒎/𝒔 

𝑴𝒂𝒙 𝒔𝒑𝒆𝒆𝒅 𝒖, 𝒗, 𝒘(𝑳. 𝑺) = 𝟕, 𝟎 , 𝟎 𝒎/s 
 

 
Fig. 10 The response of speed: the second goal of the first  

scenario; (U): solid blue line longitudinal, (V): solid red line 

lateral, (W): solid black line altitudinal. 

 
Fig. 11 Velocity errors: longitudinal, lateral, altitudinal; 

(U): dashed blue line Longitudinal, (V): dashed red line 

lateral, (W): dashed black line altitudinal, the second goal of 

the first scenario. 

 

5.1.3. In the first scenario of the third goal 

In “Fig. 12”, the output of the stable state, and in “Fig. 

13ˮ the error condition of the third goal of the first 

scenario are presented. 

 
𝑴𝒊𝒏 𝒔𝒑𝒆𝒆𝒅 𝒖, 𝒗, 𝒘(𝑳. 𝑺) = 𝟑. 𝟏 , 𝟎 , 𝟎 𝒎/𝒔 

𝑴𝒊𝒏 𝒔𝒑𝒆𝒆𝒅 𝒖, 𝒗, 𝒘(𝑯. 𝑺) = 𝟕. 𝟏, 𝟎 , 𝟎 𝒎/𝒔 

 

 
Fig. 12 The response of speed: the  third goal of the first 

scenario; (U): solid blue line longitudinal, (V): solid red line 

lateral, (W): solid black line altitudinal, 

 

 
Fig. 13 Velocity errors: longitudinal, lateral, altitudinal;  

(U): dashed blue line Longitudinal, (V): dashed red line 

latera, (W): dashed black line altitudinal, the third goal of the 

first scenario. 



44                                   Int  J   Advanced Design and Manufacturing Technology, Vol. 13/ No. 3/ September – 2020 

  

© 2020 IAU, Majlesi Branch 
 

5.1.4. In the first scenario of the fourth goal 

In this goal, we examine the minimum velocity of the  
mode A to the maximum velocity of the mode C. In 

“Figs. 14 and 15”, we have presented speed control and 

speed stability error, respectively. 

 
𝑴𝒊𝒏 𝒔𝒑𝒆𝒆𝒅 𝒖, 𝒗, 𝒘(𝑵. 𝑯) = 𝟎. 𝟏 , 𝟎 , 𝟎 𝒎/𝒔 

𝑴𝒂𝒙 𝒔𝒑𝒆𝒆𝒅 𝒖, 𝒗, 𝒘(𝑯. 𝑺) = 𝟏𝟐, 𝟎 , 𝟎 𝒎/𝒔 

 
 

 
Fig. 14 The response of speed: the fourth goal of the first 

scenario; (U): solid blue line longitudinal, (V): solid red line 

lateral, (W): solid black line altitudinal. 

 

 
Fig. 15 Velocity errors: longitudinal, lateral, altitudinal; 

(U): dashed blue line Longitudinal, (V): dashed red line 

lateral, (W): dashed black line altitudinal, the fourth goal of 

the first scenario. 

5.2. The Second Scenario: Decreasing Modes 

5.2.1. The First goal: C to B 

In this case, the velocity check is from the state of the 

maximum of the mode C to the maximum velocity of the 

mode B, and you can see the velocity control outputs in 

“Fig. 16ˮ and the velocity control error in “Fig. 17ˮ. 

 
𝑴𝒂𝒙 𝒔𝒑𝒆𝒆𝒅 𝒖, 𝒗, 𝒘(𝑯. 𝑺) = 𝟏𝟐 , 𝟎 , 𝟎 𝒎/𝒔 

𝑴𝒂𝒙 𝒔𝒑𝒆𝒆𝒅 𝒖, 𝒗, 𝒘(𝑳. 𝑺) = 𝟕, 𝟎 , 𝟎 𝒎/𝒔 

 

 
Fig. 16 The response of speed: the first goal of the second 

scenario; (U): solid blue line longitudinal, (V): solid red line 

lateral, (W): solid black line altitudinal. 

 

 
Fig. 17 Velocity errors: longitudinal, lateral, altitudinal; 

(U): dashed blue line Longitudinal, (V): dashed red line 

lateral, (W): dashed black line altitudinal, the first goal of the  

second scenario. 

5.2.2. The second goal: C to B 

We examine, in this goal, the highest velocity of the 

mode C to the lowest velocity of the mode B. Figures 18 

and 19 show the velocity control of the stability of this 

target and the state error of the situation, respectively . 
𝑴𝒂𝒙 𝒔𝒑𝒆𝒆𝒅 𝒖, 𝒗, 𝒘(𝑯. 𝑺) = 𝟏𝟐, 𝟎 , 𝟎 𝒎/𝒔 

𝑴𝒊𝒏 𝒔𝒑𝒆𝒆𝒅 𝒖, 𝒗, 𝒘(𝑳. 𝑺) = 𝟑. 𝟏, 𝟎 , 𝟎 𝒎/𝒔 
 

 
Fig. 18 The response of speed: the second goal of the 

second scenario; (U): solid blue line longitudinal, (V): solid 

red line lateral, (W): solid black line altitudinal 
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Fig. 19 Velocity errors: longitudinal, lateral, altitudinal; 

(U): dashed blue line Longitudinal, (V): dashed red line 

lateral, (W): dashed black line altitudinal, the second goal of 

the second scenario. 

5.2.3. The third goal: C to A 

In this goal, we examine the highest velocity of the mode 

C to the lowest velocity of the mode A, which is the 

worst-case stability state control in a decreasing state. 

This situation is triggered by unwanted conditions 

through an operator to a rotorcraft. Figures 19 and 20, 

show the stability velocity control of this target and the 

state error of this situation, respectively. 

 
𝑴𝒂𝒙 𝒔𝒑𝒆𝒆𝒅 𝒖, 𝒗, 𝒘(𝑯. 𝑺) = 𝟏𝟐 , 𝟎 , 𝟎 𝒎/𝒔 

𝑴𝒊𝒏 𝒔𝒑𝒆𝒆𝒅 𝒖, 𝒗, 𝒘(𝑵. 𝑯) = 𝟎. 𝟏, 𝟎 , 𝟎 𝒎/𝒔 

 

 
Fig. 20 The response of speed: the  second goal of the third 

scenario; (U): solid blue line longitudinal, (V): solid red line 

lateral, (W): solid black line altitudinal. 

 

 
Fig. 21 Velocity errors: longitudinal, lateral, altitudinal;  

(U): dashed blue line Longitudinal, (V): dashed red  line 

lateral, (W): dashed black line altitudinal, the third goal of the 

second scenario. 
 

In “Table 3ˮ, the scenario of the incremental state and 

the scenario of the decreasing state and their goals are 

specified, and the matching errors are also presented. In 

this research and the proposed method, ƛ = 0.7  is 

obtained for the designed controller. The matrix k is the 

controller of the matrix [𝑘]4∗10 and the matrix[𝑝]10∗10. 
In “Figs 22-25”, we present the control inputs. First 

scenario: incremental modes. In all shapes the first input 

is the black line and the second input is the blue line and 

the third input is the red line and the fourth input is the 

green line 

 
 

Table 3 the scenario of the incremental State and scenario of 

decreasing state and their goals 

scenario 1 

Increasing 

States 

Error u Error v Error w 

Objective 1 -0.08652 0.2544 0.007387 

Objective 2 -0.2336 0.2369 -0.1064 

Objective 3 -0.2397 0.2356 -0.1086 

Objective 4 -0.6625 0.0458 -0.1629 

Senario2 

Deceasing 

States 

 

   

Objective 1 -0.2336 0.2369 -0.1064 

Objective 2 -0.08652 0.2544 0.007387 

Objective 3 -0. 1124 0.3236 0.341 
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Fig. 22 Control effort: for scenario1 & Objective1; input 1: 

solid black line, input 2: solid blue line, input 3: solid red 

line, input 4: solid green line. 
 

 
Fig. 23 Control effort: for scenario1 & Objective 2; 

input 1:solid black line, input 2:solid blue line, input 3: solid 

red line, input 4:solid green line. 

 

 
Fig. 24 Control effort: for scenario1 & Objective3; input 1: 

solid black line, input 2: solid blue line, input 3: solid red 

line, input 4: solid green line. 
 

 
Fig. 25 Control effort: for scenario1 & Objective4; input 1: 

solid black line, input 2: solid blue line, input 3: solid red 

line, input 4:solid green line. 
 

In “Figs 26-28”, we present the control inputs. The 

Second Scenario: Decreasing modes. In all shapes the 

first input is the black line and the second input is the 

blue line and the third input is the red line and the fourth 

input is the green line. 
 

 
Fig. 26 Control effort: for scenario2 & Objective1; input 1: 

solid black line, input 2:solid blue line, input 3: solid red line, 

input 4: solid green line. 

 

 
Fig. 27 Control effort: for scenario2 & Objective2; Input1: 

solid black line, input 2: solid blue line, input 3: solid red 

line, input 4: solid green line. 
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Fig. 28 Control effort: for scenario2 & Objective3; input 1: 

solid black line, input 2: solid blue line, input 3: solid red 

line, input 4: solid green line. 

5 CONCLUSION 

In this study, a Polytopic LPV control design, for the 

velocity controller stability of an unmanned rotorcraft is 

conducted. The optimum performance for the stability of 

the designed controller demonstrates the superior 

capability of this controller over the conventional 

controller. However, in this investigation, the effect of 

flapping forces and the impact of lateral forces are also 

considered and the effectiveness of the equations of 

these forces was also applied to the system. In this 

design, the performance of adaptation with different 

scenarios under different conditions is well illustrated 

with a very low error rate of this stability. This research 

can be the key to many of the eliminated forces in future 

researches. 

6 LIST OF SYMBOLS 

1.201 -0.6075 -1.360 -7.950 3.028 0.1223 1.0189 3.3961 2.398 2.414

9.091 2.196 18.657 69.383 200.80 0.7615 0.0758 1.7319 4.5015 0.0032

0.3483 0.2257 0.5142 2.114 0.0864 0.3422 0.651 0.727 2.664 11.275

4.649 0.389 1.522 27.

K
− − − −

=
− − −

− − 776 4.887 6.595 21.432 12.473 68.477 226.766

0.7LPV

 
 
 
 
 
 

=

 

 

unit Interpretation symbol 

----- Main Rotor Mr 

------ 
Aerodynamic moment 

vector 
MB 

----- Main rotor blade number bmr 

rad 
Linkage gain ratio of 

θcycas to u2 
Alon 

rad 

Linkage gain ratio of 

stabilizer bar cyclic 

change to u2 

Clon 

Na 

Ratio of main rotor blade 

cyclic pitch to stabilizer 

bar flapping 

ksb 

s 
Time constant of bare 

main rotor 
τmr 

s 
Time constant of stabilizer 

bar 
τsb 

1/s 
Coupling effect from bs to 

as 
Abs 

N Tail Rotor Tr 

m Horizontal fin Hf 

 Main Rotor Mr 

--- 
Aerodynamic moment 

vector 
MB 

Kg.m3 Air density ρ 

rad 
Linkage gain ratio of 

θcycas to u2 
Alon 

rad 

Linkage gain ratio of 

stabilizer bar cyclic 

change to u2 

Clon 

Na 

Ratio of main rotor blade 

cyclic pitch to stabilizer 

bar flapping 

ksb 

s 
Time constant of bare 

main rotor 
τmr 

s 
Time constant of stabilizer 

bar 
τsb 

1/s 
Coupling effect from bs to 

as 
Abs 

rad 
Linkage gain ratio of 

θcycbs to u4 
Blat 

rad 

Linkage gain ratio of 

stabilizer bar cyclic 

change to u4 

Dlat 

1/s 
Coupling effect from as to 

bs 
Bas 

----- 
Drag coefficient of main 

rotor blade 
CD0 

rad 
Offset of θpedwhen u̅3is 

zero 
θped0 

rad 
Offset of  θcolwhen u1 is 

zero 
θcol0 

N 
Aerodynamic forces 

generated by fuselage 

Xfus, 
Yfus, 
Zfus 

rad 
Collective pitch angle of 

tail rotor blade 
θped 

rad 
Collective pitch angle of 

main rotor blade 
θcol 

 

symbol Interpretation unit 

u1 
Normalized collective pitch 

servo input(-1,1) 
--- 

u2 
Normalized elevator 

servo input (−1, 1) 
---- 

u3 
Normalized rudder 

servo input (−1, 1) 
---- 

u4 
Normalized aileron 

servo input (−1, 1) 
------ 

Y.F.C Yaw rate Feedback Controller --------- 
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M.F.D Min rotor Flapping Dynamic --------- 

Fusl Fuselage N 

u̅3 Actuator deflection rad 

u3in 
Intermediate state in yaw rate 

feedback 
rad 

va 
Velocity vector relative to the 

air 
m/s 

m Helicopter mass kg 

g Local acceleration of gravity m/s2 

FB Aerodynamic force vector N 

Vwin Wind gust velocity vector m/s 

VB Velocity vector body frame m/s 

PN Local NED position vector m 

Vf Vertical fin m 

Tr Tail Rotor N 

Hf Horizontal fin m 
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