Buckling Analysis of Orthotropic Annular Graphene Sheet with Various Boundary Conditions in an Elastic Medium
Subject Areas : micro and nano mechanicsHamed Vahabi 1 , Mohammad Esmaeil Golmakani 2 , Ismaeil Mobasher 3
1 - Department of Mechanical Engineering, Mashhad branch,
Islamic Azad University, Mashhad, Iran
2 - Department of Mechanical Engineering, Mashhad branch,
Islamic Azad University, Mashhad, Iran
3 - Department of Mechanical Engineering, Mashhad branch,
Islamic Azad University, Mashhad, Iran
Keywords:
Abstract :
[1] Radić, N., et al., Buckling Analysis of Double-Orthotropic Nano-plates Embedded in Pasternak Elastic Medium Using Nonlocal Elasticity Theory, Composites Part B: Engineering, Vol. 61, 2014, pp. 162-171.DOI: https://doi.org/10.1016/j.compositesb.2014.01.042.
[2] Craighead, H. G., Nanoelectromechanical Systems. Science, Vol. 290, N. 5496, 2000, pp. 1532-1535.DOI: DOI: 10.1126/science.290.5496.1532.
[3] Kim, H., Macosko, C. W., Processing-Property Relationships of Polycarbonate/Graphene Composites, Polymer, Vol. 50, No. 15, 2009, pp. 3797-3809.DOI: https://doi.org/10.1016/j.polymer.2009.05.038.
[4] Sakhaee-Pour, A., Ahmadian, M. T., and Vafai, A. Applications of Single-Layered Graphene Sheets as Mass Sensors and Atomistic Dust Detectors, Solid State Communications, Vol. 145, No. 4, 2008, pp. 168-172.DOI: https://doi.org/10.1016/j.ssc.2007.10.032.
[5] Ouyang, F. P., et al., A Biosensor Based On Graphene Nanoribbon with Nano-pores: A First-Principles Devices-Design, Chinese Physics B, Vol. 20, No. 5, 2011, pp. 058504.DOI: 10.1088/1674-1056/20/5/058504.
[6] Frégonèse, S., et al., Electrical Compact Modelling of Graphene Transistors, Solid-State Electronics, Vol. 73, 2012, pp. 27-31.DOI: https://doi.org/10.1016/j.sse.2012.02.002.
[7] Yang, L., Zhang, L., and Webster, T. J., Carbon Nanostructures for Orthopedic Medical Applications, Nano-medicine, Vol. 6, No. 7, 2011, pp. 1231-1244.DOI: 10.2217/nnm.11.107.
[8] Anjomshoa, A., et al., Finite Element Buckling Analysis of Multi-Layered Graphene Sheets On Elastic Substrate Based On Nonlocal Elasticity Theory, Applied Mathematical Modelling, Vol. 38, No. 24, 2014, pp. 5934-5955.DOI: https://doi.org/10.1016/j.apm.2014.03.036.
[9] Akgöz, B., Civalek, Ö., Buckling Analysis of Functionally Graded Microbeams Based On the Strain Gradient Theory, Acta Mechanica, Vol. 224, No. 9, 2013, pp. 2185-2201.DOI: https://doi.org/10.1007/s00707-013-0883-5.
[10] Lam, D. C. C., et al., Experiments and Theory in Strain Gradient Elasticity, Journal of the Mechanics and Physics of Solids, Vol. 51, No. 8, 2003, pp. 1477-1508.DOI: https://doi.org/10.1016/S0022-5096(03)00053-X.
[11] Yang, F., et al., Couple Stress Based Strain Gradient Theory for Elasticity, International Journal of Solids and Structures, Vol. 39, No. 10, 2002, pp. 2731-2743.DOI: https://doi.org/10.1016/S0020-7683(02)00152-X.
[12] Lu, P., et al., Thin Plate Theory Including Surface Effects, International Journal of Solids and Structures, Vol. 43, No. 16, 2006, pp. 4631-4647.DOI: https://doi.org/10.1016/j.ijsolstr.2005.07.036.
[13] Eringen, A. C., On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves, Journal of Applied Physics, Vol. 54, No. 9, 1983, pp. 4703-4710.DOI: 10.1063/1.332803.
[14] Eringen, A. C., Nonlocal Continuum Field Theories, 2002: Springer Science & Business Media.DOI: https://doi.org/10.1115/1.1553434.
[15] Şimşek, M., Yurtcu, H. H., Analytical Solutions for Bending and Buckling of Functionally Graded Nano-beams Based On the Nonlocal Timoshenko Beam Theory, Composite Structures, Vol. 97, 2013, pp. 378-386.DOI: https://doi.org/10.1016/j.compstruct.2012.10.038.
[16] Pradhan, S. C., Buckling of Single Layer Graphene Sheet Based On Nonlocal Elasticity and Higher Order Shear Deformation Theory, Physics Letters A, Vol. 373, No. 45, 2009, pp. 4182-4188.DOI: https://doi.org/10.1016/j.physleta.2009.09.021.
[17] Murmu, T., Pradhan, S. C., Buckling of Biaxially Compressed Orthotropic Plates at Small Scales, Mechanics Research Communications, Vol. 36, No. 8, 2009, pp. 933-938.DOI: https://doi.org/10.1016/j.mechrescom.2009.08.006.
[18] Pradhan, S. C., Murmu, T., Small Scale Effect On the Buckling of Single-Layered Graphene Sheets Under Biaxial Compression Via Nonlocal Continuum Mechanics, Computational Materials Science, Vol. 47, No. 1, 2009, pp. 268-274.DOI: https://doi.org/10.1016/j.commatsci.2009.08.001.
[19] Pradhan, S. C., Murmu, T., Small Scale Effect On the Buckling Analysis of Single-Layered Graphene Sheet Embedded in an Elastic Medium Based On Nonlocal Plate Theory, Physica E: Low-Dimensional Systems and Nanostructures, Vol. 42, No. 5, 2010, pp. 1293-1301.DOI: https://doi.org/10.1016/j.physe.2009.10.053.
[20] Aksencer, T., Aydogdu, M., Levy Type Solution Method for Vibration and Buckling of Nano-plates Using Nonlocal Elasticity Theory, Physica E: Low-dimensional Systems and Nanostructures, Vol. 43, No. 4, 2011, pp. 954-959.DOI: https://doi.org/10.1016/j.physe.2010.11.024.
[21] Samaei, A. T., Abbasion, S., and Mirsayar, M. M., Buckling Analysis of a Single-Layer Graphene Sheet Embedded in an Elastic Medium Based On Nonlocal Mindlin Plate Theory, Mechanics Research Communications, Vol. 38, No. 7, 2011, pp. 481-485.DOI: https://doi.org/10.1016/j.mechrescom.2011.06.003.
[22] Narendar, S., Buckling Analysis of Micro-/Nano-Scale Plates Based On Two-Variable Refined Plate Theory Incorporating Nonlocal Scale Effects, Composite Structures, Vol. 93. No. 12, 2011, pp. 3093-3103.DOI: https://doi.org/10.1016/j.compstruct.2011.06.028.
[23] Farajpour, A., Danesh, M., and Mohammadi, M., Buckling Analysis of Variable Thickness Nanoplates Using Nonlocal Continuum Mechanics, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 3, 2011, pp. 719-727.DOI: https://doi.org/10.1016/j.physe.2011.11.022.
[24] Farajpour, A., et al., Buckling of Orthotropic Micro/Nanoscale Plates Under Linearly Varying In-Plane Load Via Nonlocal Continuum Mechanics, Composite Structures, Vol. 94, No. 5, 2012, pp. 1605-1615.DOI: https://doi.org/10.1016/j.compstruct.2011.12.032.
[25] Murmu, T., et al., Nonlocal Buckling of Double-Nanoplate-Systems Under Biaxial Compression, Composites Part B: Engineering, Vol. 44. No. 1, 2013, pp. 84-94.DOI: https://doi.org/10.1016/j.compositesb.2012.07.053.
[26] Zenkour, A. M., Sobhy, M., Nonlocal Elasticity Theory for Thermal Buckling of Nano-plates Lying On Winkler–Pasternak Elastic Substrate Medium, Physica E: Low-Dimensional Systems and Nanostructures, Vol. 53, 2013, pp. 251-259.DOI: https://doi.org/10.1016/j.physe.2013.04.022.
[27] Mohammadi, M., et al., Shear Buckling of Orthotropic Rectangular Graphene Sheet Embedded in an Elastic Medium in Thermal Environment, Composites Part B: Engineering, Vol. 56, 2014, pp. 629-637.DOI: https://doi.org/10.1016/j.compositesb.2013.08.060.
[28] Asemi, S. R., et al., Thermal Effects On the Stability of Circular Graphene Sheets Via Nonlocal Continuum Mechanics, Latin American Journal of Solids and Structures, Vol. 11, No. 4, 2014, pp. 704-724.DOI: http://dx.doi.org/10.1590/S1679-78252014000400009.
[29] Mohammadi, M., Ghayour, M., and Farajpour, A., Free Transverse Vibration Analysis of Circular and Annular Graphene Sheets with Various Boundary Conditions Using the Nonlocal Continuum Plate Model, Composites Part B: Engineering, Vol. 45, No. 1, 2013, pp. 32-42.DOI: https://doi.org/10.1016/j.compositesb.2012.09.011.
[30] Farajpour, A., et al., Axisymmetric Buckling of the Circular Graphene Sheets with the Nonlocal Continuum Plate Model, Physica E: Low-Dimensional Systems and Nanostructures, Vol. 43, No. 10, 2011, pp. 1820-1825.DOI: https://doi.org/10.1016/j.physe.2011.06.018.
[31] Mohammadi, M., Ghayour, M, and Farajpour, A., Free Transverse Vibration Analysis of Circular and Annular Graphene Sheets with Various Boundary Conditions Using the Nonlocal Continuum Plate Model, Composites Part B: Engineering, Vol. 45, No. 1, 2013, pp. 32-42.DOI: https://doi.org/10.1016/j.compositesb.2012.09.011.
[32] Sobhy, M., Natural Frequency and Buckling of Orthotropic Nano-plates Resting On Two-Parameter Elastic Foundations with Various Boundary Conditions, Journal of Mechanics, Vol. 30, No. 5, 2014, pp. 443-453.DOI: DOI: https://doi.org/10.1017/jmech.2014.46.
[33] Farajpour, A., et al., Axisymmetric Buckling of the Circular Graphene Sheets with the Nonlocal Continuum Plate Model, Physica E: Low-Dimensional Systems and Nanostructures, Vol. 43, No. 10, 2011, pp. 1820-1825.DOI: https://doi.org/10.1016/j.physe.2011.06.018.
[34] Ravari, M. K., Shahidi, A., Axisymmetric Buckling of the Circular Annular Nanoplates Using Finite Difference Method, Meccanica, Vol. 48, No.1, 2013, pp. 135-144.DOI: https://doi.org/10.1007/s11012-012-9589-3.
[35] Farajpour, A., Dehghany, M., and Shahidi, A. R., Surface and Nonlocal Effects On the Axisymmetric Buckling of Circular Graphene Sheets in Thermal Environment, Composites Part B: Engineering, Vol. 50, 2013, pp. 333-343.DOI: https://doi.org/10.1016/j.compositesb.2013.02.026.
[36] Bedroud, M., Hosseini-Hashemi, S., and Nazemnezhad, R., Buckling of Circular/Annular Mindlin Nanoplates Via Nonlocal Elasticity, Acta Mechanica, Vol. 224, No. 11, 2013, pp. 2663-2676.DOI: https://doi.org/10.1007/s00707-013-0891-5.
[37] Mohammadi, M., et al., Influence of in-Plane Pre-Load On the Vibration Frequency of Circular Graphene Sheet Via Nonlocal Continuum Theory, Composites Part B: Engineering, Vol. 51, 2013, pp. 121-129.DOI: https://doi.org/10.1016/j.compositesb.2013.02.044.
[38] Wang, L., Zhang, Q., Elastic Behavior of Bilayer Graphene Under In-Plane Loadings, Current Applied Physics, Vol. 12, No. 4, 2012, pp. 1173-1177.DOI: https://doi.org/10.1016/j.cap.2012.02.043.
[39] Brush, D. O., Almroth, B. O., and Hutchinson, J., Buckling of Bars, Plates, and Shells, Journal of Applied Mechanics, Vol. 42, 1975, pp. 911.DOI: 10.1115/1.3423755
[40] Kiani, Y., Eslami, M. R., An Exact Solution for Thermal Buckling of Annular Fgm Plates On an Elastic Medium, Composites Part B: Engineering, Vol. 45, No. 1, 2013, pp. 101-110.DOI: https://doi.org/10.1016/j.compositesb.2012.09.034.
[41] Naderi, A., Saidi, A. R., Exact Solution for Stability Analysis of Moderately Thick Functionally Graded Sector Plates On Elastic Foundation, Composite Structures, Vol. 93, No. 2, 2011, pp. 629-638.DOI: https://doi.org/10.1016/j.compstruct.2010.08.016.
[42] Sepahi, O., Forouzan, M. R., and Malekzadeh, P., Large Deflection Analysis of Thermo-Mechanical Loaded Annular FGM Plates On Nonlinear Elastic Foundation Via DQM, Composite Structures, Vol. 92, No. 10, 2010, pp. 2369-2378.DOI: https://doi.org/10.1016/j.compstruct.2010.03.011.
[43] Pradhan, S. C., Murmu, T., Small Scale Effect On the Buckling of Single-Layered Graphene Sheets Under Biaxial Compression Via Nonlocal Continuum Mechanics, Computational Materials Science, Vol. 47, No. 1, 2009, pp. 268-274.DOI: https://doi.org/10.1016/j.commatsci.2009.08.001.
[44] Pradhan, S. C., Murmu, T., Small Scale Effect On the Buckling Analysis of Single-Layered Graphene Sheet Embedded in an Elastic Medium Based On Nonlocal Plate Theory, Physica E: Low-Dimensional Systems and Nanostructures, Vol. 42, No., 5, 2010, pp. 1293-1301.DOI: https://doi.org/10.1016/j.physe.2009.10.053.
[45] Pradhan, S. C., Kumar, A., Vibration Analysis of Orthotropic Graphene Sheets Using Nonlocal Elasticity Theory and Differential Quadrature Method, Composite Structures, Vol. 93, No. 2, 2011, pp. 774-779.DOI: https://doi.org/10.1016/j.compstruct.2010.08.004.
[46] Malekzadeh, P., Setoodeh, A. R., and Alibeygi Beni, A., Small Scale Effect On the Thermal Buckling of Orthotropic Arbitrary Straight-Sided Quadrilateral Nanoplates Embedded in an Elastic Medium, Composite Structures, Vol. 93, No. 8, 2011, pp. 2083-2089.DOI: https://doi.org/10.1016/j.compstruct.2011.02.013.
[47] Shu, C., Differential Quadrature and Its Application in Engineering, 2012: Springer London.
[48] Mirfakhraei, P., Redekop, D., Buckling of Circular Cylindrical Shells by the Differential Quadrature Method, International Journal of Pressure Vessels and Piping, Vol. 75, No. 4, 1998, pp. 347-353.DOI: https://doi.org/10.1016/S0308-0161(98)00032-5.
[49] Hosseini-Hashemi, S., et al., Differential Quadrature Analysis of Functionally Graded Circular and Annular Sector Plates On Elastic Foundation, Materials & Design, Vol. 31, No. 4, 2010, pp. 1871-1880.DOI: https://doi.org/10.1016/j.matdes.2009.10.060.
[50] Wang, Q., Wang, C. M., The Constitutive Relation and Small Scale Parameter of Nonlocal Continuum Mechanics for Modelling Carbon Nanotubes. Nanotechnology, Vol. 18, No. 7, 2007, pp. 075702.DOI: 10.1088/0957-4484/18/7/075702.