تحلیل پوششی داده های شبکه ای پنجره ای: کاربرد در شرکت های سرمایه گذاری
Subject Areas : International Journal of Industrial Mathematics
1 - Department of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran.
2 - Department of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran.
Keywords: کارایی پویا, تحلیل پنجره ای, شرکت سرمایه گذاری, ساختار دو مرحله ای, تحلیل پوششی داده های شبکه ای,
Abstract :
تحلیل پوششی داده های شبکه ای یکی از مهم ترین شاخه های تحلیل پوششی داده ها می باشد که به منظور سنجش عملکرد واحدهای تصمیم گیرنده با ساختار داخلی یا شبکه به کار گرفته می شود. در این مطالعه، مدل تحلیل پوششی داده های شبکه ای پنجره ای ارائه می شود که می تواند در حضور داده های پانل مورد استفاده قرار گیرد. علاوه بر این ، مدل پیشنهادی برای ارزیابی کارایی پویای 5 شرکت سرمایه گذاری در بورس اوراق بهادار تهران در بازه زمانی 2013 تا 2017 استفاده شده است. نتایج تجربی نشان می دهد که مدل پیشنهادی تحلیل پوششی داده های شبکه ای پنجره ای مؤثر است و استفاده از این مدل ، قابلیت اطمینان نتایج را افزایش می دهد.
[1] A. Al-Refaie, R. Najdawi, E. Sy, Using DEA window analysis to measure the efficiencies of blowing machines in plastics industry, Jordan Journal of Mechanical and Industrial Engineering 10 (2016) 1-11.
[2] M. Arefrad, H. Alipoor, Performance evaluation of guilan refah bank branches using data envelopment analysis-DEA (window model), Indian Journal of Fundamental and Applied Life Sciences 5 (2015) 1291-1297.
[3] R. D. Banker, A. Charnes, W. W. Cooper, Some models for estimating technical and scale inefficiencies in data envelopment analysis, Management Science 30 (1984) 1078-1092.
[4] A. Charnes, W. W. Cooper, Programming with linear fractional functionals, Naval Research Logistics Quarterly 9 (1962) 181-186.
[5] A. Charnes, W. W. Cooper, B. Golany, A development study of DEA in measuring the effect of maintenance units in the US Air Force, Annals of Operations Research 2 (1985) 95-112.
[6] A. Charnes, W. W. Cooper, E. Rhodes, Measuring the efficiency of decision making units, European Journal of Operational Research 2 (1978) 429-444.
[7] X. Chen, Y. Gao, Q. An, Z. Wang, L. Nerali, ). Energy efficiency measurement of Chinese Yangtze River Deltas cities transportation: a DEA window analysis approach, Energy Efficiency (2018) 1-13.
[8] Y. Chen, W. D. Cook, N. Li, J. Zhu, Additive efficiency decomposition in two-stage DEA, European Journal of Operational Research 196 (2009) 1170-1176.
[9] A. Flokou, V. Aletras, D. Niakas, A windowDEA based efficiency evaluation of the public hospital sector in Greece during the 5-year economic crisis, PloS One 12 (2017) 177-194.
[10] G. E. Halkos, M. L. Polemis, The impact of economic growth on environmental efficiency of the electricity sector: A hybrid window DEA methodology for the USA, Journal of Environmental Management 211 (2018) 334-46.
[11] A. Hemmasi, M. Talaeipour, H. KhademiEslam, S. H. Pourmousa, Using DEA window analysis for performance evaluation of Iranian wood panels industry, African Journal of Agricultural Research 6 (2011) 1802-1806.
[12] T. Jia, H. Yuan, The application of DEA (Data Envelopment Analysis) window analysis in the assessment of influence on operational efficiencies after the establishment of branched hospitals, BMC Health Services Research 17 (2017) 265-275.
[13] C. Kao, Network data envelopment analysis: A review, European Journal of Operational Research 239 (2014) 1-16.
[14] C. Kao, S. N. Hwang, Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan, European Journal of Operational Research 185 (2008) 418-429.
[15] Y. Ohe, N. Peypoch, Efficiency analysis of Japanese Ryokans: A window DEA approach, Tourism Economics 22 (2016) 1261-1273.
[16] P. Peykani, E. Mohammadi, Interval network data envelopment analysis model for classification of investment companies in the presence of uncertain data, Journal of Industrial and Systems Engineering 11 (2018) 63-72.
[17] P. Peykani, E. Mohammadi, A. Jabbarzadeh, A. Jandaghian, Utilizing robust data envelopment analysis model for measuring efficiency of stock, a case study: Tehran stock exchange, Journal of New Research in Mathematics 1 (2016) 15-24.
[18] P. Peykani, E. Mohammadi, M. S. Pishvaee, M. Rostamy-Malkhalifeh, A. Jabbarzadeh, A novel fuzzy data envelopment analysis based on robust possibilistic programming: possibility, necessity and credibility-based
approaches, RAIRO-Operations Research 52 (2018) 1445-1463.
[19] P. Peykani, E. Mohammadi, M. RostamyMalkhalifeh, F. Hosseinzadeh Lotfi, Fuzzy data envelopment analysis approach for ranking of stocks with an application to Tehran stock exchange, Advances in Mathematical Finance and Applications 4 (2019)31-43.
[20] D. Pjevevi, A. Radonji, Z. Hrle, V. oli, DEA window analysis for measuring port efficiencies in Serbia, Promet-Traffic & Transportation 24 (2012) 63-72.
[21] M. Pulina, C. Detotto, A. Paba, An investigation into the relationship between size and efficiency of the Italian hospitality sector: A window DEA approach, European Journal of Operational Research 204 (2010) 613-620.
[22] A. Salem Al-Eraqi, A. Mustafa, A. Tajudin Khader, An extended DEA windows analysis: Middle East and East African seaports, Journal of Economic Studies 37 (2010) 208-218.
[23] K. Wang, S. Yu, W. Zhang, Chinas regional energy and environmental efficiency: A DEA window analysis based dynamic evaluation, Mathematical and Computer Modelling 58 (2013) 1117-1127.
[24] R. Webb, Levels of efficiency in UK retail banks: a DEA window analysis, International Journal of the Economics of Business 10 (2003) 305-322.
[25] Q. D. Wu, Y. Shi, Q. Xia, W. D. Zhu, Effectiveness of the policy of circular economy in China: A DEA-based analysis for the period of 11th five-year-plan, Resources, Conservation and Recycling 83 (2014) 163-175.
[26] H. H. Yang, C. Y. Chang, Using DEA window analysis to measure efficiencies of Taiwan’s integrated telecommunication firms, Telecommunications Policy 33 (2009) 98-108.