Shelf Life Extension of Package’s Using Cupper/(Biopolymer nanocomposite) Produced by One-Step Process
Subject Areas : food microbiologyS. Ebrahimiasl 1 , S. A. Younesi 2
1 - Assistant Professor of the Department of Nanotechnology, Ahar Branch, Islamic Azad University, Ahar, Iran.
2 - Assistant Professor of the Department of Chemistry Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran.
Keywords:
Abstract :
Angles, M. N. & Dufresene, A. (2000). Plastisized Starch/Tunicine Whiskers nanocomposite 1. Structural analysis.Macromolecules. 33, 8344-8353.
Chaudhry, Q., Scotte, M., Blackburn, J., Ross, B., Boxall, A., & Castle, L. (2008). Applications and implications of nanotechnologies for the food sector.Food Additives and Contaminants, 25(3), 241-258.
Darder, M., Colilla, M. & Ruiz-Hitzky, E. (2005). Chitosan-clay nanocomposites: Application as electrochemical sensors. Applied Clay Science, 28, 199–208.
Ebrahimiasl, S., Wan Yunus, W. M. D., Kassim, A. & Zainal, Z. (2010). Prediction of grain size, thickness and absorbance of nanocrystalline tin oxide thin film by Taguchi robust design. Solid State Sciences, 12, 1323-1327.
Ebrahimiasl, S., Zakaria, A., Kassim, A. & Basri, S. N. (2015). Novel conductive polypyrrole/zinc oxide/chitosan bionanocomposite: synthesis, characterization, antioxidant, and antibacterial activities. International Journal of Nanomedicine, 10, 217–227.
Faundez, G., Troncoso, M., Navarrete, P. & Figueroa, G. (2004). Antimicrobial activity of copper surfaces against suspensions of Salmonella enterica and campylobacter. BMC Microbiology, 4, 19–25.
Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N. & Kim, J. O. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research, 52 (4), 662-668.
Imran, M., El-Fahmy, S., Revol-Junelles, A. M. & Desobry, S. (2010). Cellulose derivative based active coatings: effects of nisin and plasticizer on physico-chemical and antimicrobial properties of hydroxypropyl methylcellulose films. Carbohydrate Polymers, 81, 219–225.
Kassim, A., Block, H., Davis, F. J. & Mitchell, G. R. (1992). Anisotropic films of polypyrrole formed electrochemically using a non-planar dopant. Journal of Materials Chemistry, 2, 987-988.
Kawashita, M., Tsuneyama, S. & Mijaji, F. (2000). Antibacterial silver containing silica glass prepared by the sol-gel method.Biomaterials, 21, 393–398.
Kim, J. S., Kuk, E., Yu, K., Kim, J. H., Park, S. J. & Lee, S. J. (2007). Antimicrobial effects of silver nanoparticles.Nanomedicine: Nanotechnology, Biology, and Medicine, 3, 95-101.
Larsen, G. & Noriega, S. (2004). Dendrimer-mediated formation of Cu- CuOx nanoparticles on silica and their physical and catalytic characterization. Applied Catalysis A: General, 278, 73–81.
Lee, D., Cohen, R. E. & Rubner, M. F. (2005). Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles. Langmuir, 21, 9651–9659.
Lok, C. N., Ho, C. M., Chen, R., He, Q. Y., Yu, W. Y. & Sun H. (2006). Proteomic analysis of the mode of antibacterial action of silver nanoparticles. Journal of Proteome Research, 5, 916-924.
Mary, G., Bajpai, S. K. & Chand, N. (2009). Copper alginate-cotton cellulose (CACC) fibers with excellent antibacterial properties. Journal of Engineered Fibers and Fabrics, 4, 24–35.
Mitchell, G. R. & Geri, A. (1987). Molecular Organisation of Electrochemically Prepared Conducting Polypyrrole Films. Journal of Physics D: Applied Physics, 20, 1346-1353.
NasimulAlam, S. & Mishra, M. K. (2013). SEM and EDX study of intermetallics in a copper-tin system and the oxidation behaviour of tin. Microscopy and Analysis, 7-11.
Ninnemann, K. W. (1968). Measurements of physical properties of flexible films. In: Sweeting, O. J. (Ed.), Science and Technology of Polymer Films. Interscience, London, England, pp: 546–649.
Patel, M. K., Nagare, B. J., Bagul, D.M., Haram, S. K. & Kothari D. C. (2005). Controlled synthesis of Cu nanoparticles in fused silica and BK7glasses using ion bean induced defects. Surface and Coatings Technology, 196, 96–99.
Ramteke, C., Chakraburti, T., KetanSarangi, B. & Pandey, R. A. (2013). Synthesis of silver nanoparticles from the aqueous extract of leave of Ocimum sanctum for enhanced antibacterial activity. Journal of chemistry, 7, 6603-66015.
Saniusman, M., Ezzat El Zowalaty, M., Shameli, K., Zainuddin, N., Salama, M. & Ibrahim N. A. (2013). Synthesis, characterization and antimicrobial properties of copper nanoparticles. International Journal of Nanomedicine, 8, 4467–4479.
Sawai, J. (2003). Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. Journal of Microbiological Methods, 54, 177 182.
Singh, P. & Nanda A. (2013). Antimicrobial and antifungal potential of zinc oxide nanoparticles in comparison to conventional zinc oxide particles. Journal of Chemical and Pharmaceutical Research, 5 (11), 457-463.
Siva Kumar, V., Nagaraja, B. M., Shashikala, V., Padmasri, A. H., Madhavendra, S. S. & Raju, B. D. (2004). microorganisms in water. Journal of Molecular Catalysis A: Chemical, 223, 313–319.
Tilaki, R. M., IrajiZad, A. & Mahadavi, S. M. (2007). Size, composition and optical properties of copper nanoparticles prepared by laser ablation in liquids. ApplPhys A: Journal of Molecular Catalysis A: Chemical, 88, 415–4192.
Wang, H., Huang, Y., Tan, Z. & Hu, X. (2004). Fabrication and characterization of copper nanoparticles thin-films and the electrocatalytic behavior. Analytica Chimica Acta. 526, 13–17.
Yoon, K., Byeon, J. H., Park, J. & Hwang, J. (2007). Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Science of the Total Environment, 373, 572–5.
Zhu, H., Zhang C. & Yin, Y. (2005). Novel synthesis of copper nanoparticles: influence of the synthesis conditions on the particle size. Nanotechnology, 16, 3079–3083.