On socle and Property (A) of the f-ring $Frm(mathcal{P}(mathbb R), L)$
Subject Areas : StatisticsA. A. Estaji 1 , A. A Estaji 2 , M. Taha 3
1 - Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran
2 - Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran
3 - Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran
Keywords: ایدهآل مینیمال, $f$-حلقه, ساکل حلقه, حلقه با خاصیّت $(A)$,
Abstract :
A topoframe, denoted by $L_{ tau}$, is a pair $(L, tau)$ consisting of a frame $L$ and a subframe $ tau $ all of whose elements are complementary elements in$L$. $f$-ring $mathcal{R}(L_{ tau})$ is equal to the set $${fin Frm(mathcal{P}(mathbb R), L): f(mathfrak{O}(mathbb R))subseteq tau} .$$ In this paper, for every complemented element $ain L$ with $a, a'in tau$, we introduce anidempotent element $f_{a}$ belong to $mathcal{R}(L_{ tau})$ and we show that an ideal $I$ of $mathcal{R}(L_{ tau})$ is minimal if and only if there exists an atom $a$ of $L$ such that $I$ is generated by $ f_a$ if and only if there exists an atom $a$ of $L$ such that $ I={fin mathcal{R}(L_{ tau}): coz(f)leq a} $. Also, we prove that the socle of $f$-ring $mathcal{R}(L_{ tau})$ consists of those $f$ for which $coz (f)$ is a join of finitely many atoms and finally, we show that the $f$-ring $mathcal{R}(L_{ tau})$ has Property (A) and if $L$ has a finite number of atoms then the residue class ring $ frac{mathcal{R}(L_{ tau})}{Soc (mathcal{R}(L_{ tau}))}$ has Property (A).
[1] F. Azarpanah, O.A.S. Karamzadeh and A. Rezai Aliabad, On ideals consisting entirely of zero divisors, Comput. Algebra, 28: 1061-1073 (2000).
[2] T. Dube, A note on the socle of certain type of -rings, Bull. Iranian Math. Soc., 38 (2): 517-528 (2012).
[3] T. Dube, Contracting the socle in rings of continuous function, Rend. Sem. Mat. Univ. Padova, 123: 37-53 (2010).
[4] M.M. Ebrahimi and M. Mohmoudi, Frame, Technical Report, Shahid Beheshti University (1996).
[5] A.As. Estaji, E. Hashemi and A.A. Estaji, Socle and property (A) on real-valude function ring , Categ. Gen. Algebr. Struct. Appl., 8(1): 61-80 (2018).
[6] A.A. Estaji, A. Karimi Feizabadi and M. Zarghani, The ring of real-continuous function on a topoframe, Categ. Gen. Algebr. Struct. Appl., 4(1): 75-94 (2016).
[7] E. Hashemi, A.As. Estaji and M. Ziembowski, Answer on qustions related to rings with property (A), Proc. Edin. Math. Soc., 60: 651-664 (2017).
[8] H. Henriksen and M. Jerison, The space of minimal prime ideals of a commutative ring, Trans. Amer. Math. Soc., 115: 110-130 (1965).
[9] J.A. Huckaba, commutative rings with Zero Divisors, Marcel Dekker Inc., New York (1987).
[10] J.A. Huckaba and J.M. Keller, Annihilation of ideals in commutative rings, Pacific J. Math., 83: 375-379 (1979).
[11] J. Kaplansky, commutative rings, rev. ed. Chicago: Univ. of Chicago Press (1974).
[12] A. Karimi Feizabadi, A.A. Estaji and M. Zarghani, The ring of real-valued functtions on a frame, Categ. Gen. Algebr. Struct., Appl., 5(1): 85-102 (2016).
[13] O.A.S. Karamzadeh and M. Rostami, On the intrinsic topology and some related ideals of C(X), Proc. Amer. Math. Soc., 93: 179-184 (1985).
[14] J. Lambeck, Lectures on Rings and Modules, Blaisdell Publishing Company, Waltham, Toronto, London (1966).
[15] G. Mason, -ideals and prime ideals, J. Algebra, 26: 280-297 (1973).
[16] J. Picado and A. Pulter, Frame and locales: Topology whitout point, Frontiers in Mathematics, Springer Basel (2012).
[17] Y. Quentel, Sur la compacite du spectre minimal d un anneau, Bull. Soc. Math. France, 99: 265-272 (1971).
[18] M. Zarghani, The ring of real-continuous function on a topoframe, PhD thesis, Hakim Sabsevari University (Feb. 2017).