Inhibition of Biofilm Formation by Froriepia subpinnata Leaf Extract-Functionalized Magnetic Nanocomposites and Ciprofloxacin and Downregulation of pslA, algD, and pelA Genes in Clinical Isolates of Pseudomonas aeruginosa
Subject Areas : genetics
Mahsa Ahmadzadeh Kelangestani1
1
,
Sajedeh Moazzami Mirak Mahaleh
2
,
Mohammad Nikpassand
3
,
Mahdi Shahriarinour
4
,
Najmeh Ranji
5
1 - Department of Biology, Ra.C., Islamic Azad University, Rasht, Iran.
2 - Department of Biology, Ra.C., Islamic Azad University, Rasht, Iran.
3 - Department of Chemistry, Ra.C., Islamic Azad University, Rasht, Iran.
4 - Department of Biology, Ra.C., Islamic Azad University, Rasht, Iran
5 - Department of Biology, Ra.C., Islamic Azad University, Rasht, Iran
Keywords: Pseudomonas aeruginosa, Biofilm, Magnetic nanocomposites, Froriepia subpinnata, Ciprofloxacin,
Abstract :
introduction: Pseudomonas aeruginosa is an opportunistic hospital-acquired pathogen with multidrug resistance, in which biofilm formation plays a critical role in therapeutic failure. This study aimed to evaluate the effects of Froriepia subpinnata leaf extract-functionalized magnetic nanocomposites in combination with ciprofloxacin on the inhibition of biofilm formation and deregulation of biofilm-related gene in resistant clinical isolates.
Material and Methods: In this study, 26 clinical isolates of P. aeruginosa were collected from hospitals in Tehran, Iran, and their antibiotic susceptibility profiles were determined using the Kirby–Bauer method. Minimum inhibitory concentration (MIC) was evaluated by broth microdilution. The Froriepia subpinnata leaf extract-functionalized magnetic nanocomposites were synthesized and their anti-biofilm function were assessed in combination with ciprofloxacin. Synergistic activity was assessed by the checkerboard assay, biofilm formation was quantified using crystal violet staining, and the expression of pslA, algD, and pelA genes was analyzed by Q-RT-PCR.
Results: Physicochemical analysis confirmed the successful synthesis of Froriepia subpinnata leaf extract-functionalized magnetic nanoparticles with particle sizes ranging from 28 to 82 nm. All of isolates were resistant to ciprofloxacin, with MIC values ranging from 128 to 1024 µg/mL. Checker board analysis demonstrated a synergistic effect between the Froriepia subpinnata- functionalized nanocomposites and ciprofloxacin in the strain ATCC 9027 and several clinical isolates. Moreover, the combination treatment significantly led to decrease of biofilm formation and downregulation of pslA, algD, and pelA genes compared to treatment with ciprofloxacin alone (P<0.05).
Conclusion: The findings indicate that Froriepia subpinnata-functionalized magnetic nanocomposites can enhance the antibacterial efficacy of ciprofloxacin against resistant P. aeruginosa isolates by downregulating biofilm formation-related genes.
1. Westbrock-Wadman S, Sherman DR, Hickey MJ, Coulter SN, Zhu YQ, Warrener P, et al. Characterization of a Pseudomonas aeruginosa efflux pump contributing to aminoglycoside impermeability. Antimicrob Agents Chemother. 1999 Dec;43(12):2975-83. DOI: 10.1128/AAC.43.12.2975
2. Ghafoor A, Hay ID, Rehm BH. Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture. Appl Environ Microbiol. 2011 Aug;77(15):5238-46. DOI: 10.1128/AEM.00637-11
3. Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010 Sep;8(9):623-33. DOI: 10.1038/nrmicro2415
4. Alva PP, Sundar S, D'Souza C, Premanath R. Increased expression of genes involved in biofilm formation in a multidrug-resistant environmental Pseudomonas aeruginosa isolate. J Datta Meghe Inst Med Sci Univ. 2021;16(2):357-62.
5. Kaboli Chalmardi M, Gholami M, Hajilou N, Kakavan M, Haghshenas M, Goli HR. Investigating the Frequency of AlgD Gene in Clinical Isolates of Pseudomonas Aeruginosa Collected from Teaching-Therapeutic Hospitals of Mazandaran-2022. J Mazandaran Univ Med Sci. 2024;34(232):218-27.
6. Pakizehkar S, Ranji N, Sohi AN, Sadeghizadeh M. Polymersome-assisted delivery of curcumin: A suitable approach to decrease cancer stemness markers and regulate miRNAs expression in HT29 colorectal cancer cells. Polym Adv Technol. 2020 Jan;31(1):160-77. DOI: 10.1002/pat.4754
7. Pakizehkar S, Ranji N, Naderi Sohi A, Sadeghizadeh M. Curcumin loaded PEG400-OA nanoparticles: A suitable system to increase apoptosis, decrease migration, and deregulate miR-125b/miR182 in MDA-MB-231 human breast cancer cells. Polym Adv Technol. 2020 Aug;31(8):1793-804. DOI: 10.1002/pat.4917
8. Aladejana EB, Adelabu OA, Aladejana AE, Ndlovu SI. Antimicrobial properties of alternative medicines used in the management of infections in diabetic patients: A comprehensive review. Pharmacol Res Mod Chin Med. 2024 Sep;11:100432. DOI: 10.1016/j.prmcm.2024.100432
9. Asafo-Agyei T, Appau Y, Barimah KB, Asase A. Medicinal plants used for management of diabetes and hypertension in Ghana. Heliyon. 2023 Dec;9(12):e22977. DOI: 10.1016/j.heliyon.2023.e22977
10. Mirzania F, Sarrafi Y, Moridi Farimani M. Comparative Evaluation of Chemical Compositions and Biological Activities of Wild and Cultivated Froriepia subpinnata L. Essential Oils. J Agric Sci Technol. 2019;21(2):331-40.
11. Bandian L, Moghaddam M, bahraini m. Investigate the antimicrobial activity and synergistic effects of Zataria multiflora, Salvia verticillata and Froriepia subpinnata ethanolic extracts on bacterial vegetables decay. J Food Microbiol. 2021;1(8):45-57.
12. Adel M, Safari R, Nematollahi A, Ghiasi M, Nafian Dehkordi I. Evaluation of antifungal activity of essential oils of Eryngium campestre, Cuminum cyminum, Pimpinella affinis and Allium sativum on Fusarium solani isolated from ornamental aquarium fish. J Appl Ichthyol Res. 2015;2(4):23-32.
13. Esmailpour K, Shourian M. Green Synthesis of Gold Nanoparticles Using Pimpinella affinis Leaf and Stem Extracts and Evaluation of Their Cytotoxic Effects Against Human Breast Cancer Cells Under In-vitro Condition. Cell Tissue J. 2023;14(3):217-40.
14. Roudbaraki ZA, Ranji N, Mohammadipour A, Ghasemnegad Z. The effect of silybin-encapsulated micelle nanoparticles on mexY expression in ciprofloxacin-resistant isolates of Pseudomonas aeruginosa. J Microb World. 2018;36(11):269-77.
15. Borji S, Shahriarinour M, Shariati S, Ranji N, Nikpassand M. Enhanced therapeutic efficacy of silibinin loaded silica coated magnetic nanocomposites against Pseudomonas aeruginosa in Combination with Ciprofloxacin and HepG2 cancer cells. Sci Rep. 2025;15(1):21498. DOI: 10.1038/s41598-025-87012-4
16. Pourasgar S, Ranji N, Asadpour L, Shahriarinour M, Nikpassand M. Antibacterial and Anti-cancer Properties of Curcumin-Functionalized Silica-Coated Fe3O4 Magnetic Nanoparticles. Arab J Sci Eng. 2024.
17. Kordmahaleh NP, Mipour M, Ranji N, Shahriarinour M, Nikpassand M. Anti-bacterial activity of silibinin-functionalized silica-coated Fe3O4 magnetic nanocomposites on Pseudomonas aeruginosa. 3 Biotech. 2025;15(8):253.
18. Bahrami A, Jamzad M, Sedaghat S. Phytochemicals and Biological Activities of Froriepia subpinnata (Ledeb.) Baill. Extracts. J Med plants By-products. 2021;10(1):109-15.
19. Rostamabadi H, Samandari Bahraseman MR, Esmaeilzadeh-Salestani K. Froriepia subpinnata Leaf Extract-Induced Apoptosis in the MCF-7 Breast Cancer Cell Line by Increasing Intracellular Oxidative Stress. Iran J Pharm Res. 2023;22(1):e136643. DOI: 10.5812/ijpr-136643
20. Pourasgar S, Ranji N, Asadpour L, Shahriarinour M, Nikpassand M. Antibacterial and Anti-cancer Properties of Curcumin-Functionalized Silica-Coated Fe3O4 Magnetic Nanoparticles. Arab J Sci Eng. 2025;50(9):6231-49.
21. Salimi N, Mohammadi-Manesh E, Ahmadvand N, Danafar H, Ghiasvand S. Curcumin-Loaded by Fe3O4/GO and Fe3O4/ZnO/GO Nanocomposites for Drug Delivery Applications: Synthesis, Characterization and Anticancer Assessment. J Inorg Organomet Polym Mater. 2024;34(3):1256-71. DOI: 10.1007/s10904-023-02879-3
22. Xia Q, Huang J, Feng Q, Chen X, Liu X, Li X, et al. Size- and cell type-dependent cellular uptake, cytotoxicity and in vivo distribution of gold nanoparticles. Int J Nanomedicine. 2019;14:6957-70. DOI: 10.2147/IJN.S215005
23. Imani Pirsaraei B, Ranji N, Asadpour L. Investigation the Effect of Micelle Nanoparticles Containing Curcumin on Ciprofloxacin Resistant Isolates of Pseudomonas Aeruginosa and on mexC and mexD Genes Expression. J Arak Univ Med Sci. 2018;21(2):10-20.
24. Farahi RM, Ali AA, Gharavi S. Characterization of gyrA and parC mutations in ciprofloxacin-resistant Pseudomonas aeruginosa isolates from Tehran hospitals in Iran. Iran J Microbiol. 2018 Aug;10(4):242-9. PMID: 30675330; PMCID: PMC6339890.
25. Rajabpour M, Alikhani MY. MIC determination of Pseudomonas aeruginosa strains were isolated from clinical specimens of patients admitted to educational hospitals in Hamedan (90-91). Iran J Med Microbiol. 2013;7(3):18-25.
26. Esmaili S, Hosseini Doust R. Synergistic effect of silver nanoparticles (AgNPs) and gentamicin against clinical isolates of Pseudomona aeruginosa. Med Sci J Islam Azad Univ. 2019;29(1):64-70.
27. Fatemi N, Sharifmoghadam MR, Bahreini M, Khameneh B, Shadifar H. Antibacterial and Synergistic Effects of Herbal Extracts in Combination with Amikacin and Imipenem Against Multidrug-Resistant Isolates of Acinetobacter. Curr Microbiol. 2020 Sep;77(9):1959-67. DOI: 10.1007/s00284-020-02075-3
28. Dariushy R, Ashrafi F. Effect of Curcumin Nanoparticles on Biofilm Gene Expression in Pseudomonas Aeruginosa. Res Med. 2022;46(3):95-104.
29. Stenvang M, Dueholm MS, Vad BS, Seviour T, Zeng G, Geifman-Shochat S, et al. Epigallocatechin gallate remodels overexpressed functional amyloids in Pseudomonas aeruginosa and increases biofilm susceptibility to antibiotic treatment. J Biol Chem. 2016 Dec 23;291(51):26540-53. DOI: 10.1074/jbc.M116.739375
30. Kim HS, Lee SH, Byun Y, Park HD. 6-Gingerol reduces Pseudomonas aeruginosa biofilm formation and virulence via quorum sensing inhibition. Sci Rep. 2015 Feb 25;5:8656. DOI: 10.1038/srep08656