Investigating symmetries and conservation laws of PDEs and systems
Subject Areas : Geometry
1 -
Keywords: Approximate symmetry, generalized symmetry, Hamiltonian symmetry, $\mu$-symmetry, conservation law,
Abstract :
The main purpose of this article is to investigate some special kinds of symmetries and conservation laws of some partial differential equations (PDEs) and systems which play a significant role in physics. In fact, we review Lie point symmetry, approximate and generalized symmetry, Hamiltonian symmetry, $\mu$-symmetry and different approaches for evaluating conservation laws of PDEs and systems. Additionally, we discuss the effect of the change of variables on the bi-Hamiltonian structure of some equations and obtain the corresponding Hamiltonian formalism of the transformed equation.
[1] G. W. Bluman, S. C. Anco, Symmetry and Integeration Methods for Differential Equations, Springer, New York, 2004.
[2] G. W. Bluman, A. F. Cheviakov, S. C. Anco, Applications of Symmetry Methods to Partial Differential Equations, Springer, 2010.
[3] R. Camassa, D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71 (1993), 1661-1664.
[4] A. F. Cheviakov, Computation of fluxes of conservation laws, J. Engin. Math. 66 (2010), 153-173.
[5] G. Cicogna, G. Gaeta, P. Morando, On the relation between standard and µ-symmetries for PDEs, J. Phys. A. 37 (2004), 9467-9486.
[6] N. Euler, M. W. Shulga, W. H. Steeb, Approximate symmetries and approximate solutions for a multidimensional Landau-Ginzburg equation, J. Phys. A: Math. Gen. 25 (1992), 1095-1103.
[7] G. Gaeta, Lambda and Mu-Symmetries, Symmetry and Perturbation Theory, 2005.
[8] G. Gaeta, P. Morando, On the geometry of lambda-symmetries and PDEs reduction, J. Phys. A. 37 (2004), 6955-6975.
[9] I. M. Gelfand, L. A. Dikii, A Lie algebra structure in a formal variational calculation, Funct. Anal. Appl. 10 (1976), 18-25.
[10] W. Hereman, Symbolic computation of conservation laws of nonlinear partial differential equations in multidimensions, Int. J. Quant. Chem. 106 (2006), 278-299.
[11] W. Hereman, M. Colagrosso, R. Sayers, A. Ringler, B. Deconinck, M. Nivala, M.S. Hickman, Continuous and discrete homotopy operators and the computation of conservation laws, Differential Equations with Symbolic Computation, Birkhauser, Basel, 2005.
[12] N. H. Ibragimov, V. F. Kovalev, Approximate and Renormgroup Symmetries, Nonlinear Physical Science, Higher Education Press, 2009.
[13] M. D. Kruskal, J. Moster, Dynamical Systems: Theory and Applications, Lecture Notes in Physics, Springer, Berlin, 1975.
[14] C. Muriel, J. L. Romero, New methods of reduction for ordinary differential equation, IMA J. Appl. Math. 66 (2) (2011), 111-125.
[15] M. Nadjafikhah, P. Kabi-Nejad, Approximate symmetries of the Harry Dym equation, ISRN Math. Phys. (2013), 2013:109170.
[16] M. Nadjafikhah, P. Kabi-Nejad, Conservation Laws and Hamiltonian symmetries of Whitham-Broer-Kaup equations, Indian J. Sci. Tech. 8 (2) (2015), 178-184.
[17] M. Nadjafikhah, P. Kabi-Nejad, Generalized symmetries and higher-order conservation laws of the Camassa-Holm equation, Inter. J. Fund. Phys. Sci. 9 (2) (2019), 20-25.
[18] M. Nadjafikhah, P. Kabi-Nejad, On the change of variables associated with the hamiltonian structure of the Harry Dym equation, Global J. Adv. Res. Mod. Geo. 6 (2) (2017), 83-90.
[19] E. Noether, Invariante variations-probleme, Kgl. Ger. Wiss. Nachr. Göttingen, Math. Phys. Kl. (1918), 235-357.
[20] P. J. Olver, Application of Lie Groups to Differential Equations, Springer, New York, 1993.
[21] Z. Zhang , X. Yong, Y. Chen, Symmetry analysis for Whitham-Broer-Kaup equations, J. Nonlinear Math. Phys. 15 (2008), 383-397.